跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
ZZPolyCalc: An open-source code with fragment caching for determination of Zhang-Zhang polynomials of carbon nanostructures
Rafał Podeszwa
*
,
Henryk A. Witek
, Chien Pin Chou
*
此作品的通信作者
應用化學系
研究成果
:
Article
›
同行評審
3
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「ZZPolyCalc: An open-source code with fragment caching for determination of Zhang-Zhang polynomials of carbon nanostructures」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Adjacency Matrix
16%
Analytical Formula
16%
Bookkeeping
33%
Caching
100%
Carbon Nanostructures
100%
Carbon Nanotubes
16%
Challenging Tasks
16%
Clar Covering Polynomials
16%
Combinatorial Polynomial
16%
Computation Time
33%
Computational Cost
16%
Computer Program
16%
Exponential Scaling
50%
Fortran 2008
16%
Fullerene
33%
Graphene Flakes
50%
Hash Table
16%
Hash-based
16%
Hashing
16%
Intermediate Data
16%
Large Systems
16%
Molecular Fragments
16%
Nanostructures
50%
Nanotubes
33%
Open Source Code
100%
Order of Magnitude
16%
Programming Languages
16%
Recursive Algorithm
16%
Recursive Decomposition
33%
Regular Nanostructure
16%
Solution Method
16%
Topological Invariants
16%
Zhang-Zhang Polynomial
100%
Computer Science
Adjacency Matrix
50%
Computational Cost
50%
Computational Time
100%
Computer Software
50%
Fortran
50%
Hash Table
50%
Intermediate Data
50%
Invariant
100%
Open Source Code
100%
Programming Language
50%
Recursive Decomposition
100%
Solution Method
50%
Engineering
Adjacency Matrix
20%
Broader Class
20%
Carbon Nanostructure
100%
Carbon Nanotube
20%
Computational Cost
20%
Computational Time
40%
Fullerene
40%
Graphene
60%
Hash Table
20%
Model System
20%
Nanomaterial
80%
Nanotube
40%
Recursive
40%
Recursive Algorithm
20%
Solution Method
20%
Chemical Engineering
Carbon Nanostructure
100%
Carbon Nanotube
20%
Graphene
60%
Nanostructure
80%
Nanotube
40%
Material Science
Carbon Nanotube
11%
Fullerene
22%
Graphene
33%
Nanostructure
100%
Nanotube
22%
Mathematics
Adjacency Matrix
11%
Analytical Formula
11%
Computational Cost
11%
Polynomial
100%
Recursive Algorithm
11%
Topological Invariant
11%