Well log data inversion using radial basis function network

Kou-Yuan Huang*, Liang Chi Shen, Li Sheng Weng

*此作品的通信作者

研究成果: Conference contribution同行評審

4 引文 斯高帕斯(Scopus)

摘要

We use the radial basis function network (RBF) for well log data inversion. The first step of the network is the K-means clustering. For the second step, we adopt the 2-layer perceptron instead of conventional 1-layer perceptron. The 2-layer perceptron can do the more nonlinear mapping. The gradient descent method is used in the back propagation learning rule at the second step. The input of the network is the apparent conductivity (Ca) and the output of the network is the true formation conductivity (Ct). The original features are the network input for training process. According to our experimental results, the three-layer radial basis function can get smaller error between the desired output and the actual output. The network with 10 input features, first layer with 27 nodes, second layer with 10 hidden node, and 10 output nodes can get the smallest average mean absolute error on simulated well log data. After simulation, we apply the network to the real field data. The result is good. It shows that the RBF can do the well log data inversion.

原文English
主出版物標題2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011 - Proceedings
頁面4439-4442
頁數4
DOIs
出版狀態Published - 2011
事件2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011 - Vancouver, BC, 加拿大
持續時間: 24 7月 201129 7月 2011

出版系列

名字International Geoscience and Remote Sensing Symposium (IGARSS)

Conference

Conference2011 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2011
國家/地區加拿大
城市Vancouver, BC
期間24/07/1129/07/11

指紋

深入研究「Well log data inversion using radial basis function network」主題。共同形成了獨特的指紋。

引用此