Wafer-View Defect-Pattern-Prominent GDBN Method Using MetaFormer Variant

Shu Wen Li*, Chia Heng Yen, Shuo Wen Chang, Ying Hua Chu, Kai Chiang Wu, Mango Chia Tso Chao

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

Good-Die-in-Bad-Neighborhood (GDBN) is a technique employed to identify chips that pass initial tests but may have defects. Previous research used neural networks and expanded observation windows but ignored the impact of isolated dice. This paper improves wafer pattern information through denoising and creates a lightweight model. It also reduces training time by annotating multiple dice simultaneously. Experiments on real-world datasets show the model effectively captures more Test Escapes, reducing Defective Parts Per Million (DPPM) and improving return merchandise authorization gains.

原文English
主出版物標題Proceedings - 2024 IEEE International Test Conference, ITC 2024
發行者Institute of Electrical and Electronics Engineers Inc.
頁面76-80
頁數5
ISBN(電子)9798331520137
DOIs
出版狀態Published - 2024
事件2024 IEEE International Test Conference, ITC 2024 - San Diego, 美國
持續時間: 3 11月 20248 11月 2024

出版系列

名字Proceedings - International Test Conference
ISSN(列印)1089-3539

Conference

Conference2024 IEEE International Test Conference, ITC 2024
國家/地區美國
城市San Diego
期間3/11/248/11/24

指紋

深入研究「Wafer-View Defect-Pattern-Prominent GDBN Method Using MetaFormer Variant」主題。共同形成了獨特的指紋。

引用此