VSA: Reconfigurable vectorwise spiking neural network accelerator

Hong Han Lien, Chung Wei Hsu, Tian Sheuan Chang

研究成果: Conference contribution同行評審

8 引文 斯高帕斯(Scopus)

摘要

Spiking neural networks (SNNs) that enable low-power design on edge devices have recently attracted significant research. However, the temporal characteristic of SNNs causes high latency, high bandwidth and high energy consumption for the hardware. In this work, we propose a binary weight spiking model with IF-based Batch Normalization for small time steps and low hardware cost when direct training with input encoding layer and spatio-temporal back propagation (STBP). In addition, we propose a vectorwise hardware accelerator that is reconfigurable for different models, inference time steps and even supports the encoding layer to receive multi-bit input. The required memory bandwidth is further reduced by two-layer fusion mechanism. The implementation result shows competitive accuracy on the MNIST and CIFAR-10 datasets with only 8 time steps, and achieves power efficiency of 25.9 TOPS/W.

原文English
主出版物標題2021 IEEE International Symposium on Circuits and Systems, ISCAS 2021 - Proceedings
發行者Institute of Electrical and Electronics Engineers Inc.
ISBN(電子)9781728192017
DOIs
出版狀態Published - 22 5月 2021
事件53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021 - Daegu, 韓國
持續時間: 22 5月 202128 5月 2021

出版系列

名字Proceedings - IEEE International Symposium on Circuits and Systems
2021-May
ISSN(列印)0271-4310

Conference

Conference53rd IEEE International Symposium on Circuits and Systems, ISCAS 2021
國家/地區韓國
城市Daegu
期間22/05/2128/05/21

指紋

深入研究「VSA: Reconfigurable vectorwise spiking neural network accelerator」主題。共同形成了獨特的指紋。

引用此