Virtual-freezing fluorescence imaging flow cytometry

Hideharu Mikami*, Makoto Kawaguchi, Chun Jung Huang, Hiroki Matsumura, Takeaki Sugimura, Kangrui Huang, Cheng Lei, Shunnosuke Ueno, Taichi Miura, Takuro Ito, Kazumichi Nagasawa, Takanori Maeno, Hiroshi Watarai, Mai Yamagishi, Sotaro Uemura, Shinsuke Ohnuki, Yoshikazu Ohya, Hiromi Kurokawa, Satoshi Matsusaka, Chia Wei SunYasuyuki Ozeki, Keisuke Goda

*此作品的通信作者

研究成果: Article同行評審

80 引文 斯高帕斯(Scopus)

摘要

By virtue of the combined merits of flow cytometry and fluorescence microscopy, imaging flow cytometry (IFC) has become an established tool for cell analysis in diverse biomedical fields such as cancer biology, microbiology, immunology, hematology, and stem cell biology. However, the performance and utility of IFC are severely limited by the fundamental trade-off between throughput, sensitivity, and spatial resolution. Here we present an optomechanical imaging method that overcomes the trade-off by virtually freezing the motion of flowing cells on the image sensor to effectively achieve 1000 times longer exposure time for microscopy-grade fluorescence image acquisition. Consequently, it enables high-throughput IFC of single cells at >10,000 cells s−1 without sacrificing sensitivity and spatial resolution. The availability of numerous information-rich fluorescence cell images allows high-dimensional statistical analysis and accurate classification with deep learning, as evidenced by our demonstration of unique applications in hematology and microbiology.

原文English
文章編號1162
期刊Nature Communications
11
發行號1
DOIs
出版狀態Published - 2020

指紋

深入研究「Virtual-freezing fluorescence imaging flow cytometry」主題。共同形成了獨特的指紋。

引用此