Vehicle detection in hsuehshan tunnel using background subtraction and deep belief network

Bo Jhen Huang, Jun-Wei Hsieh, Chun Ming Tsai*

*此作品的通信作者

研究成果: Conference contribution同行評審

10 引文 斯高帕斯(Scopus)

摘要

This paper proposes a method to detect vehicle in the Hsuehshan Tunnel. Vehicle detection in the Tunnel is a challenging problem due to use of heterogeneous cameras, varied camera setup locations, low resolution videos, poor tunnel illumination, and reflected lights on the tunnel wall. Furthermore, the vehicles to be detected vary greatly in shape, color, size, and appearance. The proposed method is based on background subtraction and Deep Belief Network (DBN) with three hidden layers architecture. Experimental results show that it can detect vehicles in he Tunnel effectively. The experimental accuracy rate is 96.59%.

原文English
主出版物標題Intelligent Information and Database Systems - 9th Asian Conference, ACIIDS 2017, Proceedings
編輯Satoshi Tojo, Le Minh Nguyen, Ngoc Thanh Nguyen, Bogdan Trawinski
發行者Springer Verlag
頁面217-226
頁數10
ISBN(列印)9783319544298
DOIs
出版狀態Published - 2017
事件9th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2017 - Kanazawa, 日本
持續時間: 3 4月 20175 4月 2017

出版系列

名字Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10192 LNAI
ISSN(列印)0302-9743
ISSN(電子)1611-3349

Conference

Conference9th Asian Conference on Intelligent Information and Database Systems, ACIIDS 2017
國家/地區日本
城市Kanazawa
期間3/04/175/04/17

指紋

深入研究「Vehicle detection in hsuehshan tunnel using background subtraction and deep belief network」主題。共同形成了獨特的指紋。

引用此