Using extended classifier system to forecast S&P futures based on contrary sentiment indicators

An-Pin Chen*, Yung Hua Chang

*此作品的通信作者

研究成果: Conference contribution同行評審

11 引文 斯高帕斯(Scopus)

摘要

This research demonstrates the accurate forecasting performance of extended classifier system (XCS) based on contrary sentiment indicators in predicting S&P 500 futures. These indicators include volatility index, put-call ratio, and trading index. To prove that XCS based on sentiment indicators can fit the financial forecasting domain, the performance of XCS is compared with that of three trading strategies, including buy-and-hold, trend-following, and mean-reversion strategies over the same sample period. The simulation results showed that XCS based on contrary sentiment indicators possesses both forecasting accuracy and profits earning capability in the real world.

原文English
主出版物標題2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings
頁面2084-2090
頁數7
DOIs
出版狀態Published - 2005
事件2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005 - Edinburgh, Scotland, 英國
持續時間: 2 9月 20055 9月 2005

出版系列

名字2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005. Proceedings
3

Conference

Conference2005 IEEE Congress on Evolutionary Computation, IEEE CEC 2005
國家/地區英國
城市Edinburgh, Scotland
期間2/09/055/09/05

指紋

深入研究「Using extended classifier system to forecast S&P futures based on contrary sentiment indicators」主題。共同形成了獨特的指紋。

引用此