TY - JOUR
T1 - Uremia Induces Dental Pulp Ossification but Reciprocally Inhibits Adjacent Alveolar Bone Osteogenesis
AU - Yang, Chih Yu
AU - Chang, Zee Fen
AU - Chau, Yat Pang
AU - Chen, Ann
AU - Lee, Oscar Kuang Sheng
AU - Yang, An Hang
N1 - Publisher Copyright:
© 2015, Springer Science+Business Media New York.
PY - 2015/11/1
Y1 - 2015/11/1
N2 - Uremic patients are predisposed to atrophy of the alveolar bone and narrowing of the dental pulp chamber. Such pulp chamber changes have only been diagnosed radiologically; however, this has not been supported by any pathological evidence. We used a uremic rat model with secondary hyperparathyroidism induced by 5/6 nephrectomy surgery and high-phosphate diet to examine the dental pulp and adjacent alveolar bone pathology. In addition, we collected pulp tissues for real-time PCR. We found an opposite histopathological presentation of the ossified dental pulp and the osteomalacic adjacent alveolar bone. Furthermore, pulp cells with positive staining for Thy-1, a surrogate stem cell marker, were significantly reduced in the pulp of uremic rats compared to the controls, indicating a paucity of stem cells. This was further evidenced by the reduced pulp expression of dickkopf-1 (Dkk-1), a Wnt/β-catenin signaling inhibitor produced by mesenchymal stem cells. In contrast, expressions of receptor activator of nuclear factor κB ligand (RANKL) and RANK in uremic pulp were up-regulated, probably to counteract the ossifying process of uremic pulp. In conclusion, uremic pulp ossifications were associated with a paucity of stem cells and dysregulated Dkk-1 and RANKL signaling systems, further shifting the imbalance toward osteogenesis. Strategies to counteract such an imbalance may offer a potential therapeutic target to improve dental health in uremic patients, which warrants further interventional studies.
AB - Uremic patients are predisposed to atrophy of the alveolar bone and narrowing of the dental pulp chamber. Such pulp chamber changes have only been diagnosed radiologically; however, this has not been supported by any pathological evidence. We used a uremic rat model with secondary hyperparathyroidism induced by 5/6 nephrectomy surgery and high-phosphate diet to examine the dental pulp and adjacent alveolar bone pathology. In addition, we collected pulp tissues for real-time PCR. We found an opposite histopathological presentation of the ossified dental pulp and the osteomalacic adjacent alveolar bone. Furthermore, pulp cells with positive staining for Thy-1, a surrogate stem cell marker, were significantly reduced in the pulp of uremic rats compared to the controls, indicating a paucity of stem cells. This was further evidenced by the reduced pulp expression of dickkopf-1 (Dkk-1), a Wnt/β-catenin signaling inhibitor produced by mesenchymal stem cells. In contrast, expressions of receptor activator of nuclear factor κB ligand (RANKL) and RANK in uremic pulp were up-regulated, probably to counteract the ossifying process of uremic pulp. In conclusion, uremic pulp ossifications were associated with a paucity of stem cells and dysregulated Dkk-1 and RANKL signaling systems, further shifting the imbalance toward osteogenesis. Strategies to counteract such an imbalance may offer a potential therapeutic target to improve dental health in uremic patients, which warrants further interventional studies.
KW - Dickkopf-1
KW - Osteomalacia
KW - Pulp ossification
KW - RANKL
KW - Stem cells
KW - Uremia
UR - http://www.scopus.com/inward/record.url?scp=84943658558&partnerID=8YFLogxK
U2 - 10.1007/s00223-015-0030-5
DO - 10.1007/s00223-015-0030-5
M3 - Article
C2 - 26126938
AN - SCOPUS:84943658558
SN - 0171-967X
VL - 97
SP - 466
EP - 475
JO - Calcified Tissue International
JF - Calcified Tissue International
IS - 5
ER -