摘要
Objective: MicroRNA-122 (miR-122) is the most abundant miRNA in the liver and it plays an important role in regulating liver metabolism and tumor formation. Previous studies also reveal an anti-inflammatory function of miR-122; however, relatively little is known about the mechanisms by which miR-122 suppresses inflammation. This study aims to search the effect of miR-122 on proinflammatory chemokines/cytokines production in mice. Methods: Quantitative real-time PCR, Western blot analysis, and ELISA were performed to examine gene expression. TargetScan, miRanda, and microT v3.0 were used to search for possible miR-122 target sites in the 3′-untranslated regions (3′-UTR) of candidate genes. Luciferase reporter assay and site-directed mutagenesis were applied to verify miR-122 target sequences. LPS was applied to peritoneal macrophages and mice to evaluate inflammatory response. Results: The expression of proinflammatory chemokines, including Ccl2, Ccl4, Ccl20, Cxcl2, and Cxcl10, and Relb in the livers of miR-122 knockout (KO) mice was increased. We identified Relb as a direct miR-122 target. Overexpressing RelB in the mouse liver increased the expression of Ccl2, Ccl4, Ccl20, Cxcl2, and Cxcl10. Peritoneal macrophages from miR-122 KO mice had a higher level of RelB, and they showed a stronger NF-κB activation and more TNF-α and IL-6 secretion after LPS stimulation. Overexpression of RelB in a macrophage cell line augmented LPS-induced TNF-α and IL-6 production. miR-122 KO mice showed a greatly increased mortality rate and generated a stronger and lasting inflammatory response to LPS. Conclusions: Deletion of miR-122 caused an upregulation of proinflammatory chemokines and RelB in the liver. Increased RelB may contribute to increases in these chemokine in the liver. Intriguingly, deletion of miR-122 also enhanced the sensitivity of macrophages and mice to LPS. Our results reveal that reducing RelB expression is a new mechanism by which miR-122 regulates inflammation.
原文 | English |
---|---|
頁(從 - 到) | 22-30 |
頁數 | 9 |
期刊 | Immunology Letters |
卷 | 226 |
DOIs | |
出版狀態 | Published - 10月 2020 |