Unsupervised Point Cloud Object Co-segmentation by Co-contrastive Learning and Mutual Attention Sampling

Cheng Kun Yang, Yung Yu Chuang, Yen Yu Lin

研究成果: Conference contribution同行評審

13 引文 斯高帕斯(Scopus)

摘要

This paper presents a new task, point cloud object co-segmentation, aiming to segment the common 3D objects in a set of point clouds. We formulate this task as an object point sampling problem, and develop two techniques, the mutual attention module and co-contrastive learning, to enable it. The proposed method employs two point samplers based on deep neural networks, the object sampler and the background sampler. The former targets at sampling points of common objects while the latter focuses on the rest. The mutual attention module explores point-wise correlation across point clouds. It is embedded in both samplers and can identify points with strong cross-cloud correlation from the rest. After extracting features for points selected by the two samplers, we optimize the networks by developing the co-contrastive loss, which minimizes feature discrepancy of the estimated object points while maximizing feature separation between the estimated object and background points. Our method works on point clouds of an arbitrary object class. It is end-to-end trainable and does not need point-level annotations. It is evaluated on the ScanObjectNN and S3DIS datasets and achieves promising results. The source code will be available at https://github.com/jimmy15923/unsup_point_coseg.

原文English
主出版物標題Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
發行者Institute of Electrical and Electronics Engineers Inc.
頁面7315-7324
頁數10
ISBN(電子)9781665428125
DOIs
出版狀態Published - 2021
事件18th IEEE/CVF International Conference on Computer Vision, ICCV 2021 - Virtual, Online, 加拿大
持續時間: 11 10月 202117 10月 2021

出版系列

名字Proceedings of the IEEE International Conference on Computer Vision
ISSN(列印)1550-5499

Conference

Conference18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
國家/地區加拿大
城市Virtual, Online
期間11/10/2117/10/21

指紋

深入研究「Unsupervised Point Cloud Object Co-segmentation by Co-contrastive Learning and Mutual Attention Sampling」主題。共同形成了獨特的指紋。

引用此