Ultrahigh-Density 256-Channel Neural Sensing Microsystem Using TSV-Embedded Neural Probes

Yu Chieh Huang, Po-Tsang Huang, Shang Lin Wu, Yu Chen Hu, Yan Huei You, Jr Ming Chen, Yan Yu Huang, Hsiao Chun Chang, Yen Han Lin, Jeng-Ren Duann, Tzai-Wen Chiu, Wei Hwang, Kuan-Neng Chen, Ching-Te Chuang, Jin-Chern Chiou

研究成果: Article同行評審

10 引文 斯高帕斯(Scopus)


Highly integrated neural sensing microsystems are crucial to capture accurate signals for brain function investigations. In this paper, a 256-channel neural sensing microsystem with a sensing area of 5 × 5 mm2 is presented based on 2.5-D through-silicon-via (TSV) integration. This microsystem composes of dissolvable μ-needles, TSV-embedded μ-probes, 256-channel neural amplifiers, 11-bit area-power-efficient successive approximation register analog-to-digital converters, and serializers. This microsystem can detect 256 electrocorticography and local field potential signals within a small area of 5 mm × 5 mm. The neural amplifier realizes 57.8 dB gain with only 9.8 μW per channel. The overall power of this microsystem is only 3.79 mW for 256-channel neural sensing. A smaller microsystem with dimension of 6 mm × 4 mm has been also implanted into rat brain for somatosensory evoked potentials (SSEPs) recording by using contralateral and ipsilateral electrical stimuli with intensity from 0.2 to 1.0 mA, and successfully observed different SSEPs from left somatosensory cortex of a rat.

頁(從 - 到)1013-1025
期刊IEEE Transactions on Biomedical Circuits and Systems
出版狀態Published - 10月 2017


深入研究「Ultrahigh-Density 256-Channel Neural Sensing Microsystem Using TSV-Embedded Neural Probes」主題。共同形成了獨特的指紋。