Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2

Yu Ting Wang, Chih-Wei Luo*, Atsushi Yabushita, Kaung-Hsiung Wu, Takayoshi Kobayashi, Chang Hsiao Chen, Lain Jong Li

*此作品的通信作者

研究成果: Article同行評審

32 引文 斯高帕斯(Scopus)

摘要

The inherent valley-contrasting optical selection rules for interband transitions at the K and K′ valleys in monolayer MoS2 have attracted extensive interest. Carriers in these two valleys can be selectively excited by circularly polarized optical fields. The comprehensive dynamics of spin valley coupled polarization and polarized exciton are completely resolved in this work. Here, we present a systematic study of the ultrafast dynamics of monolayer MoS2 including spin randomization, exciton dissociation, free carrier relaxation, and electron-hole recombination by helicity- and photon energy-resolved transient spectroscopy. The time constants for these processes are 60 fs, 1 ps, 25 ps, and ∼300 ps, respectively. The ultrafast dynamics of spin polarization, valley population, and exciton dissociation provides the desired information about the mechanism of radiationless transitions in various applications of 2D transition metal dichalcogenides. For example, spin valley coupled polarization provides a promising way to build optically selective-driven ultrafast valleytronics at room temperature. Therefore, a full understanding of the ultrafast dynamics in MoS2 is expected to provide important fundamental and technological perspectives.

原文English
文章編號8289
頁(從 - 到)1-6
頁數6
期刊Scientific reports
5
DOIs
出版狀態Published - 6 2月 2015

指紋

深入研究「Ultrafast Multi-Level Logic Gates with Spin-Valley Coupled Polarization Anisotropy in Monolayer MoS2」主題。共同形成了獨特的指紋。

引用此