Tuning interfacial two-component superconductivity in CoSi2/TiSi2 heterojunctions via TiSi2 diffusivity

Shao Pin Chiu, Vivek Mishra, Yu Li, Fu Chun Zhang, Stefan Kirchner*, Juhn-Jong Lin*

*此作品的通信作者

研究成果: Article同行評審

8 引文 斯高帕斯(Scopus)

摘要

We report the observation of enhanced interfacial two-component superconductivity possessing a dominant triplet component in nonmagnetic CoSi2/TiSi2 superconductor/normal-metal planar heterojunctions. This is accomplished through the detection of odd-frequency spin-triplet even-parity Cooper pairs in the diffusive normal-metal component of T-shaped proximity junctions. We show that by modifying the diffusivity of the normal-metal part, the transition temperature enhancement can be tuned by a factor of up to 2.3 while the upper critical field increases by up to a factor of 20. Our data suggest that the C49 phase of TiSi2, which is stabilized in confined geometries, underlies this enhancement. These findings are addressed via a Ginzburg-Landau model and the quasi-classical theory.

原文English
期刊Nanoscale
DOIs
出版狀態Accepted/In press - 2023

指紋

深入研究「Tuning interfacial two-component superconductivity in CoSi2/TiSi2 heterojunctions via TiSi2 diffusivity」主題。共同形成了獨特的指紋。

引用此