TransTIC: Transferring Transformer-based Image Compression from Human Perception to Machine Perception

Yi Hsin Chen*, Ying Chieh Weng, Chia Hao Kao, Cheng Chien, Wei Chen Chiu, Wen Hsiao Peng

*此作品的通信作者

研究成果: Conference contribution同行評審

2 引文 斯高帕斯(Scopus)

摘要

This work aims for transferring a Transformer-based image compression codec from human perception to machine perception without fine-tuning the codec. We propose a transferable Transformer-based image compression framework, termed TransTIC. Inspired by visual prompt tuning, TransTIC adopts an instance-specific prompt generator to inject instance-specific prompts to the encoder and task-specific prompts to the decoder. Extensive experiments show that our proposed method is capable of transferring the base codec to various machine tasks and outperforms the competing methods significantly. To our best knowledge, this work is the first attempt to utilize prompting on the low-level image compression task.

原文English
主出版物標題Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
發行者Institute of Electrical and Electronics Engineers Inc.
頁面23240-23250
頁數11
ISBN(電子)9798350307184
DOIs
出版狀態Published - 2023
事件2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
持續時間: 2 10月 20236 10月 2023

出版系列

名字Proceedings of the IEEE International Conference on Computer Vision
ISSN(列印)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
國家/地區France
城市Paris
期間2/10/236/10/23

指紋

深入研究「TransTIC: Transferring Transformer-based Image Compression from Human Perception to Machine Perception」主題。共同形成了獨特的指紋。

引用此