Transformer-Based Variable-Rate Image Compression with Region-of-Interest Control

Chia Hao Kao*, Ying Chieh Weng, Yi Hsin Chen, Wei Chen Chiu, Wen Hsiao Peng

*此作品的通信作者

研究成果: Conference contribution同行評審

5 引文 斯高帕斯(Scopus)

摘要

This paper proposes a transformer-based learned image compression system. It is capable of achieving variable-rate compression with a single model while supporting the region-of-interest (ROI) functionality. Inspired by prompt tuning, we introduce prompt generation networks to condition the transformer-based autoencoder of compression. Our prompt generation networks generate content-adaptive tokens according to the input image, an ROI mask, and a rate parameter. The separation of the ROI mask and the rate parameter allows an intuitive way to achieve variable-rate and ROI coding simultaneously. Extensive experiments validate the effectiveness of our proposed method and confirm its superiority over the other competing methods.

原文English
主出版物標題2023 IEEE International Conference on Image Processing, ICIP 2023 - Proceedings
發行者IEEE Computer Society
頁面2960-2964
頁數5
ISBN(電子)9781728198354
DOIs
出版狀態Published - 2023
事件30th IEEE International Conference on Image Processing, ICIP 2023 - Kuala Lumpur, 馬來西亞
持續時間: 8 10月 202311 10月 2023

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
ISSN(列印)1522-4880

Conference

Conference30th IEEE International Conference on Image Processing, ICIP 2023
國家/地區馬來西亞
城市Kuala Lumpur
期間8/10/2311/10/23

指紋

深入研究「Transformer-Based Variable-Rate Image Compression with Region-of-Interest Control」主題。共同形成了獨特的指紋。

引用此