TY - JOUR
T1 - Trans-placental transfer of nicotine
T2 - Modulation by organic cation transporters
AU - Lin, I. Hsin
AU - Yang, Ling
AU - Dalley, Jeffrey W.
AU - Tsai, Tung Hu
N1 - Publisher Copyright:
© 2021 The Authors
PY - 2022/1
Y1 - 2022/1
N2 - Nicotine is a highly addictive substance and harmful to the developing foetus. However, few studies have investigated the transporter mechanism responsible for regulating the transfer of nicotine across the blood-placental interface. A multiple in-vivo microdialysis system coupled to ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed to monitor simultaneously nicotine and cotinine in the blood, placenta, foetus, and amniotic fluid of pregnant rats. The pharmacological mechanism of nicotine transfer across the placenta was investigated by co-administering corticosterone, an inhibitor of organic cation transporters (OCTs) that partly mediate the exchange of nicotine across the placenta. The results revealed that intravenously administered nicotine (1 mg/kg) was rapidly metabolised to cotinine with a transformation ratio (AUCcotinine/AUCnicotine) of 0.67 ± 0.08, 0.21 ± 0.05, 0.25 ± 0.12, 0.31 ± 0.05 in maternal blood, placenta, amniotic fluid, and foetus, respectively. The tissue transformation ratios (AUCtissue/AUCblood) were 0.83 ± 0.16, 0.65 ± 0.17, 0.57 ± 0.13 for nicotine, and 0.25 ± 0.06, 0.24 ± 0.12, 0.26 ± 0.04 for cotinine at placenta, amniotic fluid and foetus, respectively. Following the co-administration of corticosterone (2 mg/kg), the tissue transformation ratio of nicotine was significantly reduced in the placenta but was significantly increased in the foetus. Levels of cotinine were not significantly altered by the administration of corticosterone. These findings implicate OCT in mediating the transfer of nicotine across the blood-placenta barrier. Understanding the mechanism of nicotine transfer through the placenta may inform therapeutic strategies to lessen the exposure of the developing foetus to nicotine in the maternal bloodstream.
AB - Nicotine is a highly addictive substance and harmful to the developing foetus. However, few studies have investigated the transporter mechanism responsible for regulating the transfer of nicotine across the blood-placental interface. A multiple in-vivo microdialysis system coupled to ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was developed to monitor simultaneously nicotine and cotinine in the blood, placenta, foetus, and amniotic fluid of pregnant rats. The pharmacological mechanism of nicotine transfer across the placenta was investigated by co-administering corticosterone, an inhibitor of organic cation transporters (OCTs) that partly mediate the exchange of nicotine across the placenta. The results revealed that intravenously administered nicotine (1 mg/kg) was rapidly metabolised to cotinine with a transformation ratio (AUCcotinine/AUCnicotine) of 0.67 ± 0.08, 0.21 ± 0.05, 0.25 ± 0.12, 0.31 ± 0.05 in maternal blood, placenta, amniotic fluid, and foetus, respectively. The tissue transformation ratios (AUCtissue/AUCblood) were 0.83 ± 0.16, 0.65 ± 0.17, 0.57 ± 0.13 for nicotine, and 0.25 ± 0.06, 0.24 ± 0.12, 0.26 ± 0.04 for cotinine at placenta, amniotic fluid and foetus, respectively. Following the co-administration of corticosterone (2 mg/kg), the tissue transformation ratio of nicotine was significantly reduced in the placenta but was significantly increased in the foetus. Levels of cotinine were not significantly altered by the administration of corticosterone. These findings implicate OCT in mediating the transfer of nicotine across the blood-placenta barrier. Understanding the mechanism of nicotine transfer through the placenta may inform therapeutic strategies to lessen the exposure of the developing foetus to nicotine in the maternal bloodstream.
KW - Blood-placental barrier
KW - In-vivo microdialysis
KW - Nicotine
KW - Organic cation transporter
KW - Pharmacokinetics
KW - Transplacental transfer
UR - http://www.scopus.com/inward/record.url?scp=85120449453&partnerID=8YFLogxK
U2 - 10.1016/j.biopha.2021.112489
DO - 10.1016/j.biopha.2021.112489
M3 - Article
C2 - 34915670
AN - SCOPUS:85120449453
SN - 0753-3322
VL - 145
JO - Biomedicine and Pharmacotherapy
JF - Biomedicine and Pharmacotherapy
M1 - 112489
ER -