TOWARD LOW ARTIFACT VIRTUAL TRY-ON VIA PRE-WARPING PARTITIONED CLOTHING ALIGNMENT

Wei Chian Liang, Chieh Yun Chen, Hong Han Shuai

研究成果: Conference contribution同行評審

摘要

Most image-based try-on methods adopt a warping model to deform the in-shop clothes directly, but they often encounter distortion or corrupt results when dealing with complex body poses or testing on wild data. To address the challenge, we propose a pre-warping partitioned clothing alignment method toward artifact-free virtual try-on in wild data. Specifically, we use perspective transformation to warp different parts of the in-shop clothes and then adjust the results using the Warping-Parsing Condition Generator module, simultaneously generating human parsing. This approach simplifies the learning objectives of the clothing warping module, eliminating the need for significant displacements or rotations when dealing with complex poses. Experimental results demonstrate that our approach is more stable and reduces artifacts compared to state-of-the-art methods.

原文English
主出版物標題2024 IEEE International Conference on Image Processing, ICIP 2024 - Proceedings
發行者IEEE Computer Society
頁面2264-2270
頁數7
ISBN(電子)9798350349399
DOIs
出版狀態Published - 2024
事件31st IEEE International Conference on Image Processing, ICIP 2024 - Abu Dhabi, 阿拉伯聯合酋長國
持續時間: 27 10月 202430 10月 2024

出版系列

名字Proceedings - International Conference on Image Processing, ICIP
ISSN(列印)1522-4880

Conference

Conference31st IEEE International Conference on Image Processing, ICIP 2024
國家/地區阿拉伯聯合酋長國
城市Abu Dhabi
期間27/10/2430/10/24

指紋

深入研究「TOWARD LOW ARTIFACT VIRTUAL TRY-ON VIA PRE-WARPING PARTITIONED CLOTHING ALIGNMENT」主題。共同形成了獨特的指紋。

引用此