TY - JOUR
T1 - Time-dependent deformation behaviors of weak sandstones
AU - Tsai, L. S.
AU - Hsieh, Y. M.
AU - Weng, Meng-Chia
AU - Huang, T. H.
AU - Jeng, F. S.
PY - 2008/2
Y1 - 2008/2
N2 - Time-dependent deformation behavior of rocks has a significant impact on the stability of rock slopes or underground constructions. This paper presents systematic experimental data regarding time-dependent deformation of a typical weak sandstone, known as the Mushan sandstone. The observed deformations are further separated to distinguish elastic and viscoplastic behaviors of the weak sandstone through the use of multi-staged loading-creep-unloading-reloading tests. The stress path is designed to be a purely hydrostatic loading followed by a pure shear, so that the deformations induced by these two types of stresses can be distinguished. For elastic behavior, although the nonlinear stress-strain relations vary according to the applied hydrostatic stress, these stress-strain relations can be normalized by the applied hydrostatic stress or the bulk modulus and converted into a single consistent stress-strain curve. Inelastic behavior is then obtained by subtracting the elastic deformation from the total deformation. As a result, the characteristics of the viscoplastic deformation are that: (1) the direction of the viscoplastic flow is time independent, and (2) it has a similar direction to the conventionally defined plastic flow. As such, the viscoplastic potential has a similar shape to the plastic potential, but the size of the former changes with time, while the latter has a size that is time independent. Meanwhile, through the calculation of irreversible work, direct evidence of orthogonality between the yield surface and the plastic flow, as well as the viscoplastic flow, is observed. Thus, it is reasonable to assert that the yield surface, the plastic potential, and the viscoplastic potential all have the same geometry. Consequently, the associated flow rules are applicable to modeling the time-dependent deformational behavior of weak sandstones.
AB - Time-dependent deformation behavior of rocks has a significant impact on the stability of rock slopes or underground constructions. This paper presents systematic experimental data regarding time-dependent deformation of a typical weak sandstone, known as the Mushan sandstone. The observed deformations are further separated to distinguish elastic and viscoplastic behaviors of the weak sandstone through the use of multi-staged loading-creep-unloading-reloading tests. The stress path is designed to be a purely hydrostatic loading followed by a pure shear, so that the deformations induced by these two types of stresses can be distinguished. For elastic behavior, although the nonlinear stress-strain relations vary according to the applied hydrostatic stress, these stress-strain relations can be normalized by the applied hydrostatic stress or the bulk modulus and converted into a single consistent stress-strain curve. Inelastic behavior is then obtained by subtracting the elastic deformation from the total deformation. As a result, the characteristics of the viscoplastic deformation are that: (1) the direction of the viscoplastic flow is time independent, and (2) it has a similar direction to the conventionally defined plastic flow. As such, the viscoplastic potential has a similar shape to the plastic potential, but the size of the former changes with time, while the latter has a size that is time independent. Meanwhile, through the calculation of irreversible work, direct evidence of orthogonality between the yield surface and the plastic flow, as well as the viscoplastic flow, is observed. Thus, it is reasonable to assert that the yield surface, the plastic potential, and the viscoplastic potential all have the same geometry. Consequently, the associated flow rules are applicable to modeling the time-dependent deformational behavior of weak sandstones.
KW - Associated flow rule
KW - Creep
KW - Plastic potential surface
KW - Time dependent
KW - Viscoplastic potential surface
KW - Weak sandstone
KW - Yield surface
UR - http://www.scopus.com/inward/record.url?scp=38149092461&partnerID=8YFLogxK
U2 - 10.1016/j.ijrmms.2007.04.008
DO - 10.1016/j.ijrmms.2007.04.008
M3 - Article
AN - SCOPUS:38149092461
SN - 1365-1609
VL - 45
SP - 144
EP - 154
JO - International Journal of Rock Mechanics and Mining Sciences
JF - International Journal of Rock Mechanics and Mining Sciences
IS - 2
ER -