Thermal Relaxation Spectra for Evaluating Luminescence Quantum Efficiency of CASN: Eu2+ Measured by Balanced-Detection Sagnac-Interferometer Photothermal Deflection Spectroscopy

Hiromichi Chima, Naoyuki Shiokawa, Keisuke Seto, Kohsei Takahashi, Naoto Hirosaki, Takayoshi Kobayashi, Eiji Tokunaga*

*此作品的通信作者

研究成果: Article同行評審

3 引文 斯高帕斯(Scopus)

摘要

Highly sensitive broadband photothermal spectroscopy with a white-light lamp as the excitation source was developed by combining a Sagnac interferometer and balanced detection with a photothermal deflection method. A probe beam was split by a birefringent crystal CaCO3 into signal and reference beams with a balanced intensity. This balanced detection enabled the measurement of photoexcited thermal relaxation spectra of materials in the air over the whole visible range in the weak excitation limit 50 mu W/cm(2). The photothermal excitation spectrum of Eu2+-doped CaAlSiN3 phosphors (CASN:Eu2+) with a high luminescent quantum efficiency was measured to be distinctly different from the photoluminescence excitation spectrum which reflects the absorption spectrum, revealing the thermal relaxation mechanism of the phosphor. Assuming a typical non-radiative relaxation from the higher excited states to the lowest excited state and successively to the ground state, it is demonstrated that the photoluminescence efficiency of the phosphors is readily evaluated simply by comparing the photothermal and photoluminescence excitation spectra.

原文English
文章編號1008
頁數13
期刊Applied sciences-Basel
10
發行號3
DOIs
出版狀態Published - 2月 2020

指紋

深入研究「Thermal Relaxation Spectra for Evaluating Luminescence Quantum Efficiency of CASN: Eu2+ Measured by Balanced-Detection Sagnac-Interferometer Photothermal Deflection Spectroscopy」主題。共同形成了獨特的指紋。

引用此