TY - JOUR
T1 - The sbiTRS Operon Contributes to Stenobactin-Mediated Iron Utilization in Stenotrophomonas maltophilia
AU - Wu, Cheng Mu
AU - Li, Li Hua
AU - Lin, Yen Ling
AU - Wu, Chao Jung
AU - Lin, Yi Tsung
AU - Yang, Tsuey Ching
N1 - Publisher Copyright:
© 2022 Wu et al.
PY - 2022/11
Y1 - 2022/11
N2 - Iron is an essential micronutrient for various bacterial cellular processes. Fur is a global transcriptional regulator participating in iron homeostasis. Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has emerged as an opportunistic pathogen. To elucidate the novel regulatory mechanism behind iron homeostasis in S. maltophilia, wild-type KJ and KJDFur, a fur mutant, were subjected to transcriptome assay. A five-gene cluster, sbiBA-sbiTRS, was significantly upregulated in KJDFur. SbiAB is an ATP type efflux pump, SbiT is an inner membrane protein, and SbiSR is a two-component regulatory system (TCS). The sbiTRS operon organization was verified by reverse transcription-PCR (RT-PCR). Localization prediction and bacterial two-hybrid studies revealed that SbiT resided in the inner membrane and had an intramembrane interaction with SbiS. In iron-replete conditions, SbiT interacted with SbiS and maintained SbiSR TCS in a resting state. In response to iron depletion stress, SbiT no longer interacted with SbiS, leading to SbiSR TCS activation. The iron source utilization assay demonstrated the contribution of SbiSR TCS to stenobactin-mediated ferric iron utilization but not to the utilization of hemin and ferric citrate. Furthermore, SmeDEF and SbiAB pumps, known stenobactin secretion outlets, were members of the SbiSR regulon. Collectively, in an iron-depleted condition, SbiSR activation is regulated by Fur at the transcriptional level and by SbiT at the posttranslational level. Activated SbiSR contributes to stenobactin-mediated ferric iron utilization by upregulating the smeDEF and sbiAB operons. SbiSR is the first TCS found to be involved in iron homeostasis in S. maltophilia.
AB - Iron is an essential micronutrient for various bacterial cellular processes. Fur is a global transcriptional regulator participating in iron homeostasis. Stenotrophomonas maltophilia is a ubiquitous environmental bacterium that has emerged as an opportunistic pathogen. To elucidate the novel regulatory mechanism behind iron homeostasis in S. maltophilia, wild-type KJ and KJDFur, a fur mutant, were subjected to transcriptome assay. A five-gene cluster, sbiBA-sbiTRS, was significantly upregulated in KJDFur. SbiAB is an ATP type efflux pump, SbiT is an inner membrane protein, and SbiSR is a two-component regulatory system (TCS). The sbiTRS operon organization was verified by reverse transcription-PCR (RT-PCR). Localization prediction and bacterial two-hybrid studies revealed that SbiT resided in the inner membrane and had an intramembrane interaction with SbiS. In iron-replete conditions, SbiT interacted with SbiS and maintained SbiSR TCS in a resting state. In response to iron depletion stress, SbiT no longer interacted with SbiS, leading to SbiSR TCS activation. The iron source utilization assay demonstrated the contribution of SbiSR TCS to stenobactin-mediated ferric iron utilization but not to the utilization of hemin and ferric citrate. Furthermore, SmeDEF and SbiAB pumps, known stenobactin secretion outlets, were members of the SbiSR regulon. Collectively, in an iron-depleted condition, SbiSR activation is regulated by Fur at the transcriptional level and by SbiT at the posttranslational level. Activated SbiSR contributes to stenobactin-mediated ferric iron utilization by upregulating the smeDEF and sbiAB operons. SbiSR is the first TCS found to be involved in iron homeostasis in S. maltophilia.
KW - ABC-type efflux pump
KW - iron homeostasis
KW - stenobactin
KW - Stenotrophomonas maltophilia
KW - two-component regulatory system
UR - http://www.scopus.com/inward/record.url?scp=85144635636&partnerID=8YFLogxK
U2 - 10.1128/spectrum.02673-22
DO - 10.1128/spectrum.02673-22
M3 - Article
C2 - 36453931
AN - SCOPUS:85144635636
SN - 2165-0497
VL - 10
JO - Microbiology spectrum
JF - Microbiology spectrum
IS - 6
ER -