The potential role of functional near-infrared spectroscopy as clinical biomarkers in schizophrenia

Po Han Chou*, Chun Jun Huang, Chia Wei Sun

*此作品的通信作者

研究成果: Review article同行評審

27 引文 斯高帕斯(Scopus)

摘要

Functional near-infrared spectroscopy (fNIRS) is a recently developed technique that can measure hemoglobin changes in the cerebral cortex, and fNIRS-based research in psychiatry has been progressing rapidly. fNIRS is advantageous in its noninvasiveness, ease of administration, tolerance of small movements, inexpensiveness, strong signal correlations with fMRI signals, and in providing imaging with excellent time resolution and moderate spatial resolution. However, fNIRS has several disadvantages, such as low spatial resolution and shallower measurements in brain regions compared with other functional neuroimaging techniques (e.g. functional magnetic resonance imaging and positron emission tomography). Therefore, fNIRS may be a candidate instrument for clinical use in psychiatry, as it can measure brain activity in a clinical setting. Moreover, previous studies have demonstrated that altered brain activity in the prefrontal cortex is associated with clinical symptoms and functional outcomes in patients with schizophrenia, suggesting that fNIRS could be used as a potential biomarker. Future studies aimed at exploring fNIRS differences in different clinical stages, longitudinal changes, medication effects, variations during different cognitive task paradigms, cross-cultural comparisons, and applying more delicate statistical analytic methodologies are warranted to develop more accurate biomarkers that can be applied in clinical practice for differential diagnosis, monitoring symptoms, predicting functional outcomes, and the personalized decision regarding treatment options in patients with schizophrenia.

原文English
頁(從 - 到)201-217
頁數17
期刊Current Pharmaceutical Design
26
發行號2
DOIs
出版狀態Published - 2020

指紋

深入研究「The potential role of functional near-infrared spectroscopy as clinical biomarkers in schizophrenia」主題。共同形成了獨特的指紋。

引用此