The period function of the nonholomorphic Eisenstein series for PSL(2, ℤ)

Cheng-Hung Chang*, Dieter Mayer

*此作品的通信作者

研究成果: Article同行評審

9 引文 斯高帕斯(Scopus)

摘要

We calculate the period function of Lewis of the automorphic Eisenstein series E(s, w) = 1/2vsn,m≠(0,0)(mw + n) -2s for the modular group PSL(2, ℤ). This function turns out to be the function B(1/2, s + 1/2)ψs(z), where B(x, y) denotes the beta function and ψs a function introduced some time ago by Zagier and given for Rs > 1 by the series ψs(z) = ∑n,m≥1(mz + n)-2s + 1/2ζ(2s) (1 + z -2s). The analytic extension of ψs to negative integers s gives just the odd part of the period functions in the Eichler, Shimura, Manin theory for the holomorphic Eisenstein forms of weight -2s + 2. We find this way an interesting connection between holomorphic and nonholomorphic Eisenstein series on the level of their respective period functions.

原文English
頁(從 - 到)1-8
頁數8
期刊Mathematical Physics Electronic Journal
4
出版狀態Published - 1 十二月 1998

指紋

深入研究「The period function of the nonholomorphic Eisenstein series for PSL(2, ℤ)」主題。共同形成了獨特的指紋。

引用此