The Hierarchical Ensemble Model for Network Intrusion Detection in the Real-world Dataset

Lei Chen, Shao En Weng, Chu Jun Peng, Yin Chi Li, Hong Han Shuai, Wen Huang Cheng

研究成果: Conference contribution同行評審

2 引文 斯高帕斯(Scopus)

摘要

Network intrusion detection is an indispensable defense in the critical era fulling of cyberattacks. However, it faces a severe class imbalanced issue, and most of the researches are conducted on simulated data. Therefore, this work introduces a hierarchical ensemble architecture with machine learning approaches. It is trained on the latest and real-world dataset to solve the above problems. The experiments show that we outperform state-of-the-art methods on real network traffic data.

原文English
主出版物標題IEEE International Symposium on Circuits and Systems, ISCAS 2022
發行者Institute of Electrical and Electronics Engineers Inc.
頁面2983-2987
頁數5
ISBN(電子)9781665484855
DOIs
出版狀態Published - 2022
事件2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022 - Austin, 美國
持續時間: 27 5月 20221 6月 2022

出版系列

名字Proceedings - IEEE International Symposium on Circuits and Systems
2022-May
ISSN(列印)0271-4310

Conference

Conference2022 IEEE International Symposium on Circuits and Systems, ISCAS 2022
國家/地區美國
城市Austin
期間27/05/221/06/22

指紋

深入研究「The Hierarchical Ensemble Model for Network Intrusion Detection in the Real-world Dataset」主題。共同形成了獨特的指紋。

引用此