The effect of temperature and lipid on the conformational transition of gramicidin A in lipid vesicles

Ta Hsien Lin, Hsien Bin Huang, H. A. Wei, S. H. Shiao, Y. C. Chen*

*此作品的通信作者

研究成果: Article同行評審

4 引文 斯高帕斯(Scopus)

摘要

The present study investigated the effect of temperature and lipid/peptide molar ratio on the conformational changes of the membrane peptide gramicidin A from a double-stranded helix to a single-stranded helical dimmer in 1,2-dimyristoyl-glycerol-3-phosphochloine (DMPC) vesicles. Tryptophan fluorescence spectroscopy results suggested that the conformational transition fitted a three-state (two-step) "folding" model. Rate constants, k1 and k2, were determined for each of the two steps. Since k1 and k2 increased with an increase in temperature, we hypothesized that the process corresponded to the breakage and formation of the backbone hydrogen bonds. The k1 was from 10 to 45 folds faster than k2, except for lipid/peptide molar ratios above 89.21, where k2 increased rapidly. At molar ratios below 89.21, k2 was insensitive to changes in lipid concentration. To account for this phenomenon, we proposed that while the driving interaction at high molar ratios is between the indole rings of the tryptophan residues and the lipid head groups, at low molar ratios there may be an intermolecular interaction between the tryptophan residues that causes gramicidin A to form an organized aggregated network. This aggregated network, caused by the tryptophan-tryptophan interaction, may be the main effect responsible for the slow down of the conformation change.

原文English
頁(從 - 到)179-186
頁數8
期刊Biopolymers
78
發行號4
DOIs
出版狀態Published - 7月 2005

指紋

深入研究「The effect of temperature and lipid on the conformational transition of gramicidin A in lipid vesicles」主題。共同形成了獨特的指紋。

引用此