The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis

Yung An Huang, Chun Wei Kao, Kuang Kai Liu, Hou Syun Huang, Ming Han Chiang, Ching Ren Soo, Huan Cheng Chang, Tzai-Wen Chiu*, Jui-I Chao, Eric Hwang


研究成果: Article同行評審

60 引文 斯高帕斯(Scopus)


Nanodiamond (ND) has emerged as a promising carbon nanomaterial for therapeutic applications. In previous studies, ND has been reported to have outstanding biocompatibility and high uptake rate in various cell types. ND containing nitrogen-vacancy centers exhibit fluorescence property is called fluorescent nanodiamond (FND), and has been applied for bio-labeling agent. However, the influence and application of FND on the nervous system remain elusive. In order to study the compatibility of FND on the nervous system, neurons treated with FNDs in vitro and in vivo were examined. FND did not induce cytotoxicity in primary neurons from either central (CNS) or peripheral nervous system (PNS); neither did intracranial injection of FND affect animal behavior. The neuronal uptake of FNDs was confirmed using flow cytometry and confocal microscopy. However, FND caused a concentration-dependent decrease in neurite length in both CNS and PNS neurons. Time-lapse live cell imaging showed that the reduction of neurite length was due to the spatial hindrance of FND on advancing axonal growth cone. These findings demonstrate that FNDs exhibit low neuronal toxicity but interfere with neuronal morphogenesis, and should be taken into consideration when applications involve actively growing neurites (e.g. nerve regeneration).

期刊Scientific reports
出版狀態Published - 5 11月 2014


深入研究「The effect of fluorescent nanodiamonds on neuronal survival and morphogenesis」主題。共同形成了獨特的指紋。