The comprehensive machine learning analytics for heart failure

Chao Yu Guo*, Min Yang Wu, Hao Min Cheng*

*此作品的通信作者

研究成果: Article同行評審

11 引文 斯高帕斯(Scopus)

摘要

Background: Early detection of heart failure is the basis for better medical treatment and prognosis. Over the last decades, both prevalence and incidence rates of heart failure have increased worldwide, resulting in a significant global public health issue. However, an early diagnosis is not an easy task because symptoms of heart failure are usually non-specific. Therefore, this study aims to develop a risk prediction model for incident heart failure through a machine learning-based predictive model. Although African Americans have a higher risk of incident heart failure among all populations, few studies have developed a heart failure risk prediction model for African Americans. Methods: This research implemented the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression, support vector machine, random forest, and Extreme Gradient Boosting (XGBoost) to establish the Jackson Heart Study’s predictive model. In the analysis of real data, missing data are problematic when building a predictive model. Here, we evaluate predictors’ inclusion with various missing rates and different missing imputation strategies to discover the optimal analytics. Results: According to hundreds of models that we examined, the best predictive model was the XGBoost that included variables with a missing rate of less than 30 percent, and we imputed missing values by non-parametric random forest imputation. The optimal XGBoost machine demonstrated an Area Under Curve (AUC) of 0.8409 to predict heart failure for the Jackson Heart Study. Conclusion: This research identifies variations of diabetes medication as the most crucial risk factor for heart failure compared to the complete cases approach that failed to discover this phenomenon.

原文English
文章編號4943
期刊International journal of environmental research and public health
18
發行號9
DOIs
出版狀態Published - 1 5月 2021

指紋

深入研究「The comprehensive machine learning analytics for heart failure」主題。共同形成了獨特的指紋。

引用此