TY - JOUR
T1 - The C-terminal Sequence of LMADS1 Is Essential for the Formation of Homodimers for B Function Proteins
AU - Tzeng, Tsai Yu
AU - Liu, Hsin Ching
AU - Yang, Chang Hsien
PY - 2004/3/12
Y1 - 2004/3/12
N2 - LMADS1, a lily (Lilium longiflorum) AP3 orthologue, contains the complete consensus sequence of the paleoAP3 (YGSHDLRLA) and PI-derived (YEFRVQPS-QPNLH) motifs in the C-terminal region of the protein. Interestingly, through yeast two-hybrid analysis, LMADS1 was found to be capable of forming homodimers. These results indicated that LMADS1 represents an ancestral form of the B function protein, which retains the ability to form homodimers in regulating petal and stamen development in lily. To explore the involvement of the conserved motifs in the C-terminal region of LMADS1 in forming homodimers, truncated forms of LMADS1 were generated, and their ability to form homodimers was analyzed using yeast two-hybrid and electrophoretic mobility shift assay. The ability of LMADS1 to form homodimers decreased once the C-terminal paleoAP3 motif was deleted. When both paleoAP3 and PI-derived motifs were deleted, the ability of LMADS1 to form homodimers was completely abolished. This result indicated that although the paleoAP3 motif promotes the formation of LMADS1 homodimers, the PI-derived motif is essential. Deletion analysis indicated that two amino acids, RV, of the 5 final amino acids, YEFRV, in the PI-derived motif are essential for the formation of homodimers. Further, point mutation analysis indicated that amino acid Val was absolutely necessary, whereas residue Arg played a less important role in the formation of homodimers. Furthermore, Arabidopsis AP3 was able to form homodimers once its C-terminal region was replaced by that of LMADS1. This result indicated that the C-terminal region of LMADS1 is responsible and essential for homodimer formation of the ancestral form of the B function protein.
AB - LMADS1, a lily (Lilium longiflorum) AP3 orthologue, contains the complete consensus sequence of the paleoAP3 (YGSHDLRLA) and PI-derived (YEFRVQPS-QPNLH) motifs in the C-terminal region of the protein. Interestingly, through yeast two-hybrid analysis, LMADS1 was found to be capable of forming homodimers. These results indicated that LMADS1 represents an ancestral form of the B function protein, which retains the ability to form homodimers in regulating petal and stamen development in lily. To explore the involvement of the conserved motifs in the C-terminal region of LMADS1 in forming homodimers, truncated forms of LMADS1 were generated, and their ability to form homodimers was analyzed using yeast two-hybrid and electrophoretic mobility shift assay. The ability of LMADS1 to form homodimers decreased once the C-terminal paleoAP3 motif was deleted. When both paleoAP3 and PI-derived motifs were deleted, the ability of LMADS1 to form homodimers was completely abolished. This result indicated that although the paleoAP3 motif promotes the formation of LMADS1 homodimers, the PI-derived motif is essential. Deletion analysis indicated that two amino acids, RV, of the 5 final amino acids, YEFRV, in the PI-derived motif are essential for the formation of homodimers. Further, point mutation analysis indicated that amino acid Val was absolutely necessary, whereas residue Arg played a less important role in the formation of homodimers. Furthermore, Arabidopsis AP3 was able to form homodimers once its C-terminal region was replaced by that of LMADS1. This result indicated that the C-terminal region of LMADS1 is responsible and essential for homodimer formation of the ancestral form of the B function protein.
UR - http://www.scopus.com/inward/record.url?scp=1642316183&partnerID=8YFLogxK
U2 - 10.1074/jbc.M311646200
DO - 10.1074/jbc.M311646200
M3 - Article
C2 - 14676188
AN - SCOPUS:1642316183
SN - 0021-9258
VL - 279
SP - 10747
EP - 10755
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 11
ER -