TensorGRAF: Tensorial Generative Radiance Field

Pin Chieh Yu*, Der Lor Way, Zen Chung Shih

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

3D-aware generative methods based on neural radiance fields are gaining attention. Nevertheless, they suffer from slow training and execution speeds due to volume rendering and deep neural networks. We propose using a voxel grid as the explicit representation of the radiance field, combining a shallow network to interpret the spatial features. We employ tensor decomposition to convert the voxel into axis-aligned feature vectors, reducing synthesis space complexity from O(n3) to O(n). Additionally, we leverage the well-established 2D generative adversarial network structure in our 1D feature vector generator.

原文English
主出版物標題International Workshop on Advanced Imaging Technology, IWAIT 2024
編輯Masayuki Nakajima, Phooi Yee Lau, Jae-Gon Kim, Hiroyuki Kubo, Chuan-Yu Chang, Qian Kemao
發行者SPIE
ISBN(電子)9781510679924
DOIs
出版狀態Published - 2024
事件2024 International Workshop on Advanced Imaging Technology, IWAIT 2024 - Langkawi, 馬來西亞
持續時間: 7 1月 20248 1月 2024

出版系列

名字Proceedings of SPIE - The International Society for Optical Engineering
13164
ISSN(列印)0277-786X
ISSN(電子)1996-756X

Conference

Conference2024 International Workshop on Advanced Imaging Technology, IWAIT 2024
國家/地區馬來西亞
城市Langkawi
期間7/01/248/01/24

指紋

深入研究「TensorGRAF: Tensorial Generative Radiance Field」主題。共同形成了獨特的指紋。

引用此