Temporal focusing multiphoton microscopy with optimized parallel multiline scanning for fast biotissue imaging

Chia-Yuan Chang, Chun-Yun Lin, Yvonne Y. Hu, Sheng-Feng Tsai, Feng-Chun Hsu, Shean-Jen Chen*

*此作品的通信作者

研究成果: Article同行評審

摘要

Significance: Line scanning-based temporal focusing multiphoton microscopy (TFMPM) has superior axial excitation confinement (AEC) compared to conventional widefield TFMPM, but the frame rate is limited due to the limitation of the single line-to-line scanning mechanism. The development of the multiline scanning-based TFMPM requires only eight multiline patterns for full-field uniform multiphoton excitation and it still maintains superior AEC.

Aim: The optimized parallel multiline scanning TFMPM is developed, and the performance is verified with theoretical simulation. The system provides a sharp AEC equivalent to the line scanning-based TFMPM, but fewer scans are required.

Approach: A digital micromirror device is integrated in the TFMPM system and generates the multiline pattern for excitation. Based on the result of single-line pattern with sharp AEC, we can further model the multiline pattern to find the best structure that has the highest duty cycle together with the best AEC performance.

Results: The AEC is experimentally improved to 1.7 m from the 3.5 mu m of conventional TFMPM. The adopted multiline pattern is akin to a pulse-width-modulation pattern with a spatial period of four times the diffraction-limited line width. In other words, ideally only four pi/2 spatial phase-shift scans are required to form a full two-dimensional image with superior AEC instead of image-size-dependent line-to-line scanning.

Conclusions: We have demonstrated the developed parallel multiline scanning-based TFMPM has the multiline pattern for sharp AEC and the least scans required for full-field uniform excitation. In the experimental results, the temporal focusing-based multiphoton images of disordered biotissue of mouse skin with improved axial resolution due to the near-theoretical limit AEC are shown to clearly reduce background scattering. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License.

原文English
文章編號016501
頁(從 - 到)1-16
頁數16
期刊Journal of Biomedical Optics
26
發行號1
DOIs
出版狀態Published - 1 一月 2021

指紋

深入研究「Temporal focusing multiphoton microscopy with optimized parallel multiline scanning for fast biotissue imaging」主題。共同形成了獨特的指紋。

引用此