TY - JOUR
T1 - Synthesis of CoO-Decorated Graphene Hollow Nanoballs for High-Performance Flexible Supercapacitors
AU - Tseng, Chi-Ang
AU - Sahoo, Prasanta Kumar
AU - Lee, Chuan Pei
AU - Lin, Yu-Ting
AU - Xu, Jing-Han
AU - Chen, Yit-Tsong
PY - 2020
Y1 - 2020
N2 - The formation of thin and uniform capacitive layers for fully interacting with an electrolyte in a supercapacitor is a key challenge to achieve optimal capacitance. Here, we demonstrate a binder-free and flexible supercapacitor with the electrode made of cobalt oxide nanoparticle (CoO NP)-wrapped graphene hollow nanoballs (GHBs). The growth process of Co(OH)2 NPs, which could subsequently be thermally annealed to CoO NPs, was monitored by in situ electrochemical liquid transmission electron microscopy (TEM). In the dynamic growth of Co(OH)2 NPs on a film of GHBs, the lateral formation of fan-shaped clusters of Co(OH)2 NPs spread over the surface of GHBs was observed by in situ TEM. This CoO-GHBs/CC electrode exhibits high specific capacitance (2238 F g−1 at 1 A g−1) and good rate capability (1170 F g−1 at 15 A g−1). The outstanding capacitive performance and good rate capability of the CoO-GHBs/CC electrode were achieved by the synergistic combination of highly pseudocapacitive CoO and electrically conductive GHBs with large surface areas. A solid-state symmetric supercapacitor (SSC), with CoO-GHBs/CCs used for both positive and negative electrodes, exhibits high power density (6000 W kg−1 at 8.2 Wh kg−1), high energy density (16 Wh kg−1 at 800 W kg−1), cycling stability (∼100% capacitance retention after 5000 cycles), and excellent mechanical flexibility at various bending positions. Finally, a serial connection of four SSC devices can efficiently power a red light-emitting diode after being charged for 20 s, demonstrating the practical application of this CoO-GHBs/CC-based SSC device for efficient energy storage.
AB - The formation of thin and uniform capacitive layers for fully interacting with an electrolyte in a supercapacitor is a key challenge to achieve optimal capacitance. Here, we demonstrate a binder-free and flexible supercapacitor with the electrode made of cobalt oxide nanoparticle (CoO NP)-wrapped graphene hollow nanoballs (GHBs). The growth process of Co(OH)2 NPs, which could subsequently be thermally annealed to CoO NPs, was monitored by in situ electrochemical liquid transmission electron microscopy (TEM). In the dynamic growth of Co(OH)2 NPs on a film of GHBs, the lateral formation of fan-shaped clusters of Co(OH)2 NPs spread over the surface of GHBs was observed by in situ TEM. This CoO-GHBs/CC electrode exhibits high specific capacitance (2238 F g−1 at 1 A g−1) and good rate capability (1170 F g−1 at 15 A g−1). The outstanding capacitive performance and good rate capability of the CoO-GHBs/CC electrode were achieved by the synergistic combination of highly pseudocapacitive CoO and electrically conductive GHBs with large surface areas. A solid-state symmetric supercapacitor (SSC), with CoO-GHBs/CCs used for both positive and negative electrodes, exhibits high power density (6000 W kg−1 at 8.2 Wh kg−1), high energy density (16 Wh kg−1 at 800 W kg−1), cycling stability (∼100% capacitance retention after 5000 cycles), and excellent mechanical flexibility at various bending positions. Finally, a serial connection of four SSC devices can efficiently power a red light-emitting diode after being charged for 20 s, demonstrating the practical application of this CoO-GHBs/CC-based SSC device for efficient energy storage.
KW - in situ electrochemical liquid transmission electron microscopy, binder-free, graphene hollow nanoballs, solid-state symmetric supercapacitors, cobalt oxide
M3 - Article
SN - 1944-8244
VL - 12
SP - 40426
EP - 40432
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
ER -