TY - JOUR
T1 - Symptom-based scoring technique by machine learning to predict COVID-19
T2 - a validation study
AU - Vidyanti, Amelia Nur
AU - Satiti, Sekar
AU - Khairani, Atitya Fithri
AU - Fauzi, Aditya Rifqi
AU - Hardhantyo, Muhammad
AU - Sufriyana, Herdiantri
AU - Su, Emily Chia Yu
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Background: Coronavirus disease 2019 (COVID-19) surges, such as that which occurred when omicron variants emerged, may overwhelm healthcare systems. To function properly, such systems should balance detection and workloads by improving referrals using simple yet precise and sensitive diagnostic predictions. A symptom-based scoring system was developed using machine learning for the general population, but no validation has occurred in healthcare settings. We aimed to validate a COVID-19 scoring system using self-reported symptoms, including loss of smell and taste as major indicators. Methods: A cross-sectional study was conducted to evaluate medical records of patients admitted to Dr. Sardjito Hospital, Yogyakarta, Indonesia, from March 2020 to December 2021. Outcomes were defined by a reverse-transcription polymerase chain reaction (RT-PCR). We compared the symptom-based scoring system, as the index test, with antigen tests, antibody tests, and clinical judgements by primary care physicians. To validate use of the index test to improve referral, we evaluated positive predictive value (PPV) and sensitivity. Results: After clinical judgement with a PPV of 61% (n = 327/530, 95% confidence interval [CI]: 60% to 62%), confirmation with the index test resulted in the highest PPV of 85% (n = 30/35, 95% CI: 83% to 87%) but the lowest sensitivity (n = 30/180, 17%, 95% CI: 15% to 19%). If this confirmation was defined by either positive predictive scoring or antigen tests, the PPV was 92% (n = 55/60, 95% CI: 90% to 94%). Meanwhile, the sensitivity was 88% (n = 55/62, 95% CI: 87% to 89%), which was higher than that when using only antigen tests (n = 29/41, 71%, 95% CI: 69% to 73%). Conclusions: The symptom-based COVID-19 predictive score was validated in healthcare settings for its precision and sensitivity. However, an impact study is needed to confirm if this can balance detection and workload for the next COVID-19 surge.
AB - Background: Coronavirus disease 2019 (COVID-19) surges, such as that which occurred when omicron variants emerged, may overwhelm healthcare systems. To function properly, such systems should balance detection and workloads by improving referrals using simple yet precise and sensitive diagnostic predictions. A symptom-based scoring system was developed using machine learning for the general population, but no validation has occurred in healthcare settings. We aimed to validate a COVID-19 scoring system using self-reported symptoms, including loss of smell and taste as major indicators. Methods: A cross-sectional study was conducted to evaluate medical records of patients admitted to Dr. Sardjito Hospital, Yogyakarta, Indonesia, from March 2020 to December 2021. Outcomes were defined by a reverse-transcription polymerase chain reaction (RT-PCR). We compared the symptom-based scoring system, as the index test, with antigen tests, antibody tests, and clinical judgements by primary care physicians. To validate use of the index test to improve referral, we evaluated positive predictive value (PPV) and sensitivity. Results: After clinical judgement with a PPV of 61% (n = 327/530, 95% confidence interval [CI]: 60% to 62%), confirmation with the index test resulted in the highest PPV of 85% (n = 30/35, 95% CI: 83% to 87%) but the lowest sensitivity (n = 30/180, 17%, 95% CI: 15% to 19%). If this confirmation was defined by either positive predictive scoring or antigen tests, the PPV was 92% (n = 55/60, 95% CI: 90% to 94%). Meanwhile, the sensitivity was 88% (n = 55/62, 95% CI: 87% to 89%), which was higher than that when using only antigen tests (n = 29/41, 71%, 95% CI: 69% to 73%). Conclusions: The symptom-based COVID-19 predictive score was validated in healthcare settings for its precision and sensitivity. However, an impact study is needed to confirm if this can balance detection and workload for the next COVID-19 surge.
KW - Clinical prediction rules
KW - COVID-19
KW - Hospital referral
KW - Machine learning
KW - Validation study
UR - http://www.scopus.com/inward/record.url?scp=85179637760&partnerID=8YFLogxK
U2 - 10.1186/s12879-023-08846-0
DO - 10.1186/s12879-023-08846-0
M3 - Article
C2 - 38087249
AN - SCOPUS:85179637760
SN - 1471-2334
VL - 23
JO - BMC Infectious Diseases
JF - BMC Infectious Diseases
IS - 1
M1 - 871
ER -