TY - JOUR

T1 - Symmetry Incorporated Cost-Effective Architectures for Two-Dimensional Digital Filters

AU - Van, Lan-Da

AU - Khoo, I. Hung

AU - Chen, Pei Yu

AU - Reddy, Haranatha Hari C.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - Professor Fettweis as far back as 1977 published a paper generalizing McClellan transformation to obtain circular symmetry in 2-D and spherical, hyper-spherical symmetries in multidimensional digital filters [1]. This survey paper presents stateof-the-art two-dimensional (2-D) VLSI digital filter architectures possessing various symmetries in the filter magnitude response. Preceding the symmetry structures, a generalized formulation is given that allows the derivation of various new 2-D VLSI filter structures of any order without global broadcast. Following this, two types (namely, Type 1 [20] and Type 3 [21], [25], [26]) of cost-effective 2-D magnitude symmetry filter architectures possessing diagonal, four-fold rotational, quadrantal, and octagonal symmetries with reduced number of multipliers are given. By combining the identities of the Types-1 and 3 symmetry filter structures, multimode 2-D symmetry filters which enable the above four symmetry modes are discussed. The Type-1 and Type-3 multimode filters can result in a 65.3% cost reduction in terms of number of multipliers compared with the sum of the multipliers of the four individual Type-1 symmetry filter structures studied in this paper. Furthermore, Type-3 has shorter critical path than Type-1 multimode filter. The paper is concluded with the presentation of a 2-D filter design example and a corresponding structure.

AB - Professor Fettweis as far back as 1977 published a paper generalizing McClellan transformation to obtain circular symmetry in 2-D and spherical, hyper-spherical symmetries in multidimensional digital filters [1]. This survey paper presents stateof-the-art two-dimensional (2-D) VLSI digital filter architectures possessing various symmetries in the filter magnitude response. Preceding the symmetry structures, a generalized formulation is given that allows the derivation of various new 2-D VLSI filter structures of any order without global broadcast. Following this, two types (namely, Type 1 [20] and Type 3 [21], [25], [26]) of cost-effective 2-D magnitude symmetry filter architectures possessing diagonal, four-fold rotational, quadrantal, and octagonal symmetries with reduced number of multipliers are given. By combining the identities of the Types-1 and 3 symmetry filter structures, multimode 2-D symmetry filters which enable the above four symmetry modes are discussed. The Type-1 and Type-3 multimode filters can result in a 65.3% cost reduction in terms of number of multipliers compared with the sum of the multipliers of the four individual Type-1 symmetry filter structures studied in this paper. Furthermore, Type-3 has shorter critical path than Type-1 multimode filter. The paper is concluded with the presentation of a 2-D filter design example and a corresponding structure.

UR - http://www.scopus.com/inward/record.url?scp=85061824411&partnerID=8YFLogxK

U2 - 10.1109/MCAS.2018.2872665

DO - 10.1109/MCAS.2018.2872665

M3 - Article

AN - SCOPUS:85061824411

SN - 1531-636X

VL - 19

SP - 33

EP - 54

JO - IEEE Circuits and Systems Magazine

JF - IEEE Circuits and Systems Magazine

IS - 1

M1 - 8640217

ER -