摘要
Functional electrical stimulation (FES) can be used to activate the dysfunctional lower limb muscles of individuals with neurological disorders to produce cycling as a means of rehabilitation. However, previous literature suggests that poor muscle control and nonphysiological muscle fiber recruitment during FES-cycling causes lower efficiency and power output at the cycle crank than able-bodied cycling, thus motivating the investigation of improved control methods for FES-cycling. In this paper, a stimulation pattern is designed based on the kinematic effectiveness of the rider's hip and knee joints to produce a forward torque about the cycle crank. A robust controller is designed for the uncertain, nonlinear cycle-rider system with autonomous, state-dependent switching. Provided sufficient conditions are satisfied, the switched controller yields ultimately bounded tracking of a desired cadence. Experimental results on four able-bodied subjects demonstrate cadence tracking errors of 0.05 ±1.59 and 5.27 ±2.14 revolutions per minute during volitional and FES-induced cycling, respectively. To establish feasibility of FES-assisted cycling in subjects with Parkinson's disease, experimental results with one subject demonstrate tracking errors of 0.43 ±4.06 and 0.17 ±3.11 revolutions per minute during volitional and FES-induced cycling, respectively.
原文 | English |
---|---|
頁(從 - 到) | 1373-1383 |
頁數 | 11 |
期刊 | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
卷 | 24 |
發行號 | 12 |
DOIs | |
出版狀態 | Published - 12月 2016 |