TY - JOUR
T1 - Superior coulombic efficiency of lithium anodes for rechargeable batteries utilizing high-concentration ether electrolytes
AU - Xie, Jian De
AU - Liu, Weng Jing
AU - Li, Chi
AU - Patra, Jagabandhu
AU - Gandomi, Yasser Ashraf
AU - Dong, Quan Feng
AU - Chang, Jeng-Kuei
PY - 2019/10/1
Y1 - 2019/10/1
N2 - This study adopts high-concentration ether electrolytes to improve high-rate capability, cycling stability, and Coulombic efficiency (CE) for lithium ion batteries with lithium anode. A series of ether-based electrolytes including lithium bis(fluorosulfonyl)imide (LiFSI)-glyme/ethylene carbonate (EC), LiFSI-glyme/EC, LiFSI-diglyme/EC, LiFSI-triglyme/EC, LiFSI-tetraglyme (G4)/EC, and LiFSI-1,3-dioxolane (DOL)/EC, along with commonly used LiPF6-DEC/EC were prepared to delineate the influences of concentration, chain length, molecular structure (linear or ring ether), and EC additive on the electrochemical performance of Li anodes. An optimum composition for ether-based electrolyte was determined resulting in significant improvement in anti-flammability as well as CE at both low and high rates. At ultra-high current density operation (e.g. 6 mA cm−2), the CE was 95.5 and 97.1% with 3 M LiFSI-G4/EC and 3 M LiFSI-DOL/EC, respectively. Using 1 M LiPF6 carbonate-based electrolyte tend to grow a needle-like dendritic structure when depositing lithium metal on Cu foils, whereas high-concentration ether electrolyte promotes a knot-like and rounded Li metal microstructure. High concentration EC-based electrolytes, are capable of facilitating Li+ almost in tandem with solvent molecules, thereby reducing the number of free molecules, reducing the chance of side reaction with Li metal, and subsequently inhibiting the formation of dendritic Li structures.
AB - This study adopts high-concentration ether electrolytes to improve high-rate capability, cycling stability, and Coulombic efficiency (CE) for lithium ion batteries with lithium anode. A series of ether-based electrolytes including lithium bis(fluorosulfonyl)imide (LiFSI)-glyme/ethylene carbonate (EC), LiFSI-glyme/EC, LiFSI-diglyme/EC, LiFSI-triglyme/EC, LiFSI-tetraglyme (G4)/EC, and LiFSI-1,3-dioxolane (DOL)/EC, along with commonly used LiPF6-DEC/EC were prepared to delineate the influences of concentration, chain length, molecular structure (linear or ring ether), and EC additive on the electrochemical performance of Li anodes. An optimum composition for ether-based electrolyte was determined resulting in significant improvement in anti-flammability as well as CE at both low and high rates. At ultra-high current density operation (e.g. 6 mA cm−2), the CE was 95.5 and 97.1% with 3 M LiFSI-G4/EC and 3 M LiFSI-DOL/EC, respectively. Using 1 M LiPF6 carbonate-based electrolyte tend to grow a needle-like dendritic structure when depositing lithium metal on Cu foils, whereas high-concentration ether electrolyte promotes a knot-like and rounded Li metal microstructure. High concentration EC-based electrolytes, are capable of facilitating Li+ almost in tandem with solvent molecules, thereby reducing the number of free molecules, reducing the chance of side reaction with Li metal, and subsequently inhibiting the formation of dendritic Li structures.
KW - Coulombic efficiency
KW - Ether electrolyte
KW - High concentration electrolyte
KW - Li dendritic structure
KW - Li metal battery
UR - http://www.scopus.com/inward/record.url?scp=85068843711&partnerID=8YFLogxK
U2 - 10.1016/j.electacta.2019.07.020
DO - 10.1016/j.electacta.2019.07.020
M3 - Article
AN - SCOPUS:85068843711
SN - 0013-4686
VL - 319
SP - 625
EP - 633
JO - Electrochimica Acta
JF - Electrochimica Acta
ER -