@inproceedings{b31748f3b5f2497e852103fddcaf0c78,
title = "Style-Structure Disentangled Features and Normalizing Flows for Diverse Icon Colorization",
abstract = "We present a colorization network that generates flat-color icons according to given sketches and semantic colorization styles. Our network contains a style-structure disentangled colorization module and a normalizing flow. The colorization module transforms a paired sketch image and style image into a flat-color icon. To enhance network generalization and the quality of icons, we present a pixel-wise decoder, a global style code, and a contour loss to reduce color gradients at flat regions and increase color discontinuity at boundaries. The normalizing flow maps Gaussian vectors to diverse style codes conditioned on the given semantic colorization label. This conditional sampling enables users to control attributes and obtain diverse colorization results. Compared to previous methods built upon conditional generative adversarial networks, our approach enjoys the advantages of both high image quality and diversity. To evaluate its effectiveness, we compared the flat-color icons generated by our approach and recent colorization and image-to-image translation methods on various conditions. Experiment results verify that our method out- performs state-of-the-arts qualitatively and quantitatively.",
keywords = "Image and video synthesis and generation, Vision + graphics",
author = "Li, {Yuan Kui} and Lien, {Yun Hsuan} and Wang, {Yu Shuen}",
note = "Publisher Copyright: {\textcopyright} 2022 IEEE.; 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 ; Conference date: 19-06-2022 Through 24-06-2022",
year = "2022",
doi = "10.1109/CVPR52688.2022.01096",
language = "English",
series = "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition",
publisher = "IEEE Computer Society",
pages = "11234--11243",
booktitle = "Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022",
address = "United States",
}