Structured sparsity learning-based pruned retraining volterra equalization for data-center interconnects

Govind Sharan Yadav, Chun Yen Chuang, Kai Ming Feng*, Jyehong Chen, Young Kai Chen

*此作品的通信作者

研究成果: Conference contribution同行評審

摘要

We propose a structured sparsity learning-based pruned retraining Volterra equalization for inter-dadta-center interconnects. Compared with conventional VE, we achieve 95% and 90.5% complexity reduction without signal degradation for B2B and 40-km at 80-Gb/s PAM4, respectively.

原文English
主出版物標題Optical Fiber Communication Conference, OFC 2021
發行者Optica Publishing Group (formerly OSA)
ISBN(電子)9781557528209
出版狀態Published - 2021
事件Optical Fiber Communication Conference, OFC 2021 - Virtual, Online, 美國
持續時間: 6 6月 202111 6月 2021

出版系列

名字Optics InfoBase Conference Papers

Conference

ConferenceOptical Fiber Communication Conference, OFC 2021
國家/地區美國
城市Virtual, Online
期間6/06/2111/06/21

指紋

深入研究「Structured sparsity learning-based pruned retraining volterra equalization for data-center interconnects」主題。共同形成了獨特的指紋。

引用此