Stochastic STT-MRAM Spiking Neuron Circuit

Fu Xiang Liang, Paritosh Sahu, Ming Hung Wu, Jeng Hua Wei, Shyh Shyuan Sheu, Tuo Hung Hou*

*此作品的通信作者

研究成果: Conference contribution同行評審

4 引文 斯高帕斯(Scopus)

摘要

We propose a compact STT-MRAM spiking neuron circuit that is a critical component of future hardware neural networks for accelerating deep learning. A SPICE compact model was established for the stochastic back-hopping oscillation of STT-MRAM, and the complete functionality of the spiking neuron circuit was demonstrated. Comparing to other emerging neuron circuits based on non-volatile memory (NVM) and the conventional capacitor-based integrate-and fire CMOS neuron circuit, this STT-MRAM spiking neuron circuit achieves the smallest area of 26 m by using the 65nm technology. For event-based spiking neural networks, this neuron circuit provides a competitive spiking rate of 100 kHz. For accurate analog-to-digital conversions in deep neural networks, this neuron circuit achieves a 4- bit resolution with minimal quantization error.

原文English
主出版物標題2020 International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA 2020
發行者Institute of Electrical and Electronics Engineers Inc.
頁面151-152
頁數2
ISBN(電子)9781728142326
DOIs
出版狀態Published - 8月 2020
事件2020 International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA 2020 - Hsinchu, Taiwan
持續時間: 10 8月 202013 8月 2020

出版系列

名字2020 International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA 2020

Conference

Conference2020 International Symposium on VLSI Technology, Systems and Applications, VLSI-TSA 2020
國家/地區Taiwan
城市Hsinchu
期間10/08/2013/08/20

指紋

深入研究「Stochastic STT-MRAM Spiking Neuron Circuit」主題。共同形成了獨特的指紋。

引用此