跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Stochastic recurrent neural network for speech recognition
Jen-Tzung Chien
, Chen Shen
電機工程學系
研究成果
:
Conference article
›
同行評審
8
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Stochastic recurrent neural network for speech recognition」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Speech Recognition
100%
Recurrent Neural Network
100%
Stochastic Recurrent Neural Networks
100%
Neural Network
66%
Classification System
33%
Classification Model
33%
Gaussian Distribution
33%
Hidden Neurons
33%
Learning Approaches
33%
Class Label
33%
TIMIT
33%
Variational Autoencoder
33%
Stochastic Learning
33%
Parameter Dependence
33%
Latent Variable Models
33%
Discriminative Features
33%
Stochastic Modeling
33%
Variational Inference
33%
Informative Features
33%
Error Back Propagation Algorithm
33%
Neural Network Classifier
33%
Stochastic Error
33%
Stochastic Networks
33%
Input Speech
33%
Deep Model
33%
Hidden States
33%
Mean Parameter
33%
Neural Weights
33%
Probabilistic Properties
33%
Variance Parameter
33%
Deep Classification
33%
Speech Frames
33%
Computer Science
Speech Recognition
100%
Recurrent Neural Network
100%
Learning Approach
16%
Classification Models
16%
Discriminative Feature
16%
Backpropagation Algorithm
16%
Latent Variable Model
16%
Engineering
Recurrent Neural Network
100%
Gaussians
20%
Backpropagation Algorithm
20%
Hidden Neuron
20%
Class Label
20%
Latent Variable Model
20%
Learning Approach
20%