Stable and Efficient Hole Selective Contacts for Silicon Photovoltaics via Solution-Processed Luminescent Small Molecules

Li Jung Kuo, Li Yu Li, Yu Chun Chang, Tong Ke Lin, Han Chen Chang, Yu Chiao Shieh, Shih Wei Chen, Jia Min Shieh, Li Yin Chen, Peichen Yu*, Yu Chiang Chao*, Hsin Fei Meng*

*此作品的通信作者

研究成果: Article同行評審

1 引文 斯高帕斯(Scopus)

摘要

We report an organic luminescent small molecule, Bis(1-phenylisoquinoline) (acetylacetonate) iridium(III) or Ir(piq)2(acac), that can function as a stable and efficient hole selective contact (HSC) for crystalline silicon (c-Si) solar cells. The devices with the Ir(piq)2(acac) HSC exhibit superior charge transport properties and high stability for up to 30 days in the air without packaging. The photovoltaic characteristics with the solution-processed Ir(piq)2(acac) HSC exhibit little dependence on the blade coating speed and film thickness, demonstrating tolerance to coating and thickness variations. Moreover, the series resistance of the solar cells and the surface work function of the Ir(piq)2(acac) HSCs exhibit analogous correlations to the annealing temperature, suggesting that the fill factor (FF) enhancement originates from an upward energy band bending and a reduced barrier height which facilitates hole transport and collection. The conventional c-Si solar cell incorporating an Ir(piq)2(acac) HSC achieves a 17.8% power conversion efficiency (PCE) with a 78.9% FF, both exceeding the reference counterpart with a 16.9% PCE and 76.8% FF. This work opens up possibilities for exploring a variety of organic luminescent small molecules as efficient hole selective contacts in high-efficiency and low-cost silicon photovoltaics. Graphic Abstract: [Figure not available: see fulltext.]

原文English
期刊Journal of Electronic Materials
DOIs
出版狀態Accepted/In press - 2023

指紋

深入研究「Stable and Efficient Hole Selective Contacts for Silicon Photovoltaics via Solution-Processed Luminescent Small Molecules」主題。共同形成了獨特的指紋。

引用此