Spatiotemporal Dilated Convolution with Uncertain Matching for Video-based Crowd Estimation

    研究成果: Article同行評審

    3 引文 斯高帕斯(Scopus)


    In this paper, we propose a novel SpatioTemporal convolutional Dense Network (STDNet) to address the video-based crowd counting problem, which contains the decomposition of 3D convolution and the 3D spatiotemporal dilated dense convolution to alleviate the rapid growth of the model size caused by the Conv3D layer. Moreover, since the dilated convolution extracts the multiscale features, we combine the dilated convolution with the channel attention block to enhance the feature representations. Due to the error that occurs from the difficulty of labeling crowds, especially for videos, imprecise or standard-inconsistent labels may lead to poor convergence for the model. To address this issue, we further propose a new patch-wise regression loss (PRL) to improve the original pixel-wise loss. Experimental results on three video-based benchmarks, i.e., the UCSD, Mall and WorldExpo'10 datasets, show that STDNet outperforms both image- and video-based state-of-the-art methods.

    期刊IEEE Transactions on Multimedia
    出版狀態Published - 8 一月 2021


    深入研究「Spatiotemporal Dilated Convolution with Uncertain Matching for Video-based Crowd Estimation」主題。共同形成了獨特的指紋。