Somatic mutations of mitochondrial DNA in aging and cancer progression

Hsin Chen Lee*, Chia Ming Chang, Chin Wen Chi

*此作品的通信作者

研究成果: Review article同行評審

76 引文 斯高帕斯(Scopus)

摘要

Mitochondria are intracellular organelles responsible for generating ATP through respiration and oxidative phosphorylation (OXPHOS), producing reactive oxygen species, and initiating and executing apoptosis. Mitochondrial dysfunction has been observed to be an important hallmark of aging and cancer. Because mitochondrial DNA (mtDNA) is important in maintaining functionally competent organelles, accumulation of mtDNA mutations can affect energy production, oxidative stress, and cell survival, which may contribute to aging and/or carcinogenesis. This review outlines a variety of somatic mtDNA mutations identified in aging tissues and human cancers, as well as recent advances in understanding the causal role of mtDNA mutations in the aging process and cancer progression. Mitochondrial dysfunction elicited by somatic mutations in mtDNA could induce apoptosis in aging cells and some cancer cells with severe mtDNA mutations. In addition, it could activate mitochondria-to-nucleus retrograde signaling to modulate the expression of nuclear genes involved in a metabolic shift from OXPHOS to glycolysis, facilitate cells to adapt to altered environments and develop resistance to chemotherapeutic agents, or promote metastatic properties of cancer cells. These findings suggest that accumulation of somatic mtDNA mutations is not only an important contributor to human aging but also plays a critical role in cancer progression.

原文English
頁(從 - 到)S47-S58
期刊Ageing Research Reviews
9
發行號SUPPL.
DOIs
出版狀態Published - 11月 2010

指紋

深入研究「Somatic mutations of mitochondrial DNA in aging and cancer progression」主題。共同形成了獨特的指紋。

引用此