TY - GEN
T1 - Single channel wireless EEG device for real-time fatigue level detection
AU - Ko, Li-Wei
AU - Lai, Wei Kai
AU - Liang, Wei Gang
AU - Chuang, Chun Hsiang
AU - Lu, Shao Wei
AU - Lu, Yi Chen
AU - Hsiung, Tien Yang
AU - Wu, Hsu Hsuan
AU - Lin, Chin Teng
N1 - Publisher Copyright:
© 2015 IEEE.
PY - 2015/9/28
Y1 - 2015/9/28
N2 - Driver fatigue problem is one of the important factors of traffic accidents. Recent years, many research had investigated that using EEG signals can effectively detect driver's drowsiness level. However, real-time monitoring system is required to apply these fatigue level detection techniques in the practical application, especially in the real-road driving. Therefore, it required less channels, portable and wireless, real-time monitoring and processing techniques for developing the real-time monitoring system. In this study, we develop a single channel wireless EEG device which can real-time detect driver's fatigue level on the mobile device such as smart phone or tablet. The developed device is investigated to obtain a better and precise understanding of brain activities of mental fatigue under driving, which is of great benefit for devolvement of detection of driving fatigue system. This system consists of a Bluetooth-enabled one channel EEG, a regression model, and smartphone, which was a platform recording and transforming the raw EEG data to useful driving status. In the experiment, this was a sustained-attention driving task to implement in a virtual-reality (VR) driving simulator. To training model and develop the system, we were performed for 15 subjects to study Electroencephalography (EEG) brain dynamics by using a mobile and wireless EEG device. Based on the outstanding training results, the leave-one-subject-out cross validation test obtained 90% fatigue detection accuracy. These results indicate that the combination of a smartphone and wireless EEG device constitutes an effective and easy wearable solution for detecting and preventing driver fatigue in real driving environments.
AB - Driver fatigue problem is one of the important factors of traffic accidents. Recent years, many research had investigated that using EEG signals can effectively detect driver's drowsiness level. However, real-time monitoring system is required to apply these fatigue level detection techniques in the practical application, especially in the real-road driving. Therefore, it required less channels, portable and wireless, real-time monitoring and processing techniques for developing the real-time monitoring system. In this study, we develop a single channel wireless EEG device which can real-time detect driver's fatigue level on the mobile device such as smart phone or tablet. The developed device is investigated to obtain a better and precise understanding of brain activities of mental fatigue under driving, which is of great benefit for devolvement of detection of driving fatigue system. This system consists of a Bluetooth-enabled one channel EEG, a regression model, and smartphone, which was a platform recording and transforming the raw EEG data to useful driving status. In the experiment, this was a sustained-attention driving task to implement in a virtual-reality (VR) driving simulator. To training model and develop the system, we were performed for 15 subjects to study Electroencephalography (EEG) brain dynamics by using a mobile and wireless EEG device. Based on the outstanding training results, the leave-one-subject-out cross validation test obtained 90% fatigue detection accuracy. These results indicate that the combination of a smartphone and wireless EEG device constitutes an effective and easy wearable solution for detecting and preventing driver fatigue in real driving environments.
KW - Brain computer interface
KW - driver drowsiness detection
KW - wearable devices
UR - http://www.scopus.com/inward/record.url?scp=84951116169&partnerID=8YFLogxK
U2 - 10.1109/IJCNN.2015.7280817
DO - 10.1109/IJCNN.2015.7280817
M3 - Conference contribution
AN - SCOPUS:84951116169
T3 - Proceedings of the International Joint Conference on Neural Networks
BT - 2015 International Joint Conference on Neural Networks, IJCNN 2015
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - International Joint Conference on Neural Networks, IJCNN 2015
Y2 - 12 July 2015 through 17 July 2015
ER -