摘要
Introducing magnetism to two-dimensional topological insulators is a central issue in the pursuit of magnetic topological materials in low dimensionality. By means of low-temperature growth at 80 K, we succeeded in fabricating a monolayer stanene on Co/Cu(111) and resolving ferromagnetic spin contrast by field-dependent spin-polarized scanning tunneling microscopy (SP-STM). Increases of both remanence to saturation magnetization ratio (Mr/Ms) and coercive field (Hc) due to an enhanced perpendicular magnetic anisotropy (PMA) are further identified by out-of-plane magneto-optical Kerr effect (MOKE). In addition to ultraflat stanene fully relaxed on bilayer Co/Cu(111) from density functional theory (DFT), characteristic topological properties including an in-plane s-p band inversion and a spin-orbit coupling (SOC) induced gap about 0.25 eV at the Γ̅ point have also been verified in the Sn-projected band structure. Interfacial coupling of single-atomic-layer stanene with ferromagnetic Co biatomic layers allows topological band features to coexist with ferromagnetism, facilitating a conceptual design of atomically thin magnetic topological heterostructures.
原文 | English |
---|---|
頁(從 - 到) | 7456-7465 |
頁數 | 10 |
期刊 | ACS Nano |
卷 | 17 |
發行號 | 8 |
DOIs | |
出版狀態 | Published - 25 4月 2023 |