Shot noise in nanoscale conductors from first principles

Yu-Chang Chen, Massimiliano Di Ventra

研究成果: Article同行評審

37 引文 斯高帕斯(Scopus)

摘要

We describe a field-theoretic approach to calculate quantum shot noise in nanoscale conductors from first principles. Our starting point is the second-quantization field operator to calculate shot noise in terms of single quasiparticle wave functions obtained self-consistently within the density-functional theory. The approach is valid in both linear and nonlinear response and is particularly suitable in studying shot noise in atomic-scale conductors. As an example, we study shot noise in Si atomic wires between metal electrodes. We find that shot noise is strongly nonlinear as a function of bias and it is enhanced for one- and two-Si wires due to the large contribution from the metal electrodes. For longer wires it shows an oscillatory behavior for even and odd number of atoms with opposite trend with respect to the conductance, indicating that current fluctuations persist with increasing wire length.

原文English
文章編號153304
頁(從 - 到)1533041-1533044
頁數4
期刊Physical Review B - Condensed Matter and Materials Physics
67
發行號15
DOIs
出版狀態Published - 28 4月 2003

指紋

深入研究「Shot noise in nanoscale conductors from first principles」主題。共同形成了獨特的指紋。

引用此