摘要
We consider the classical two-species Lotka-Volterra competition-diffusion system in the strong-weak competition case. When the corresponding minimal speed of the traveling waves is nonlinearly selected, we show that the solution of the Cauchy problem uniformly converges to the minimal traveling wave in two different situations, for which the invading speed is locally determined: (i) one species is an invasive one and the other is a native species; (ii) both two species are invasive species.
原文 | English |
---|---|
頁(從 - 到) | 236-264 |
頁數 | 29 |
期刊 | Journal des Mathematiques Pures et Appliquees |
卷 | 172 |
DOIs | |
出版狀態 | Published - 4月 2023 |