Sharp estimates for the spreading speeds of the Lotka-Volterra competition-diffusion system: The strong-weak type with pushed front

Chang Hong Wu, Dongyuan Xiao*, Maolin Zhou

*此作品的通信作者

研究成果: Article同行評審

2 引文 斯高帕斯(Scopus)

摘要

We consider the classical two-species Lotka-Volterra competition-diffusion system in the strong-weak competition case. When the corresponding minimal speed of the traveling waves is nonlinearly selected, we show that the solution of the Cauchy problem uniformly converges to the minimal traveling wave in two different situations, for which the invading speed is locally determined: (i) one species is an invasive one and the other is a native species; (ii) both two species are invasive species.

原文English
頁(從 - 到)236-264
頁數29
期刊Journal des Mathematiques Pures et Appliquees
172
DOIs
出版狀態Published - 4月 2023

指紋

深入研究「Sharp estimates for the spreading speeds of the Lotka-Volterra competition-diffusion system: The strong-weak type with pushed front」主題。共同形成了獨特的指紋。

引用此