跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Session Management for URLLC in 5G Open Radio Access Network: A Machine Learning Approach
Shao Yu Lien
, Der Jiunn Deng, Bai Chuan Chang
智慧系統與應用研究所
研究成果
:
Conference contribution
›
同行評審
7
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Session Management for URLLC in 5G Open Radio Access Network: A Machine Learning Approach」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Latency
100%
Ultra-low
100%
Session Management
100%
Low-latency Communications
100%
Ultra-reliable
100%
Machine Learning Approach
100%
Open Radio Access Network (O-RAN)
100%
Base Station
50%
Reinforcement Learning
50%
Reliability Constraint
50%
3GPP New Radio
50%
Network Applications
25%
Data Transmission
25%
Air Interface
25%
Performance Enhancement
25%
Data Networks
25%
Latency Constraint
25%
Machine Learning Techniques
25%
Learning Scheme
25%
Backhaul
25%
Core Network
25%
Unknown Environment
25%
Event Prediction
25%
Recent Innovation
25%
Sequential Decision Making
25%
International Mobile Telecommunications
25%
Local Base Station
25%
Admin
25%
Computer Science
Session Management
100%
Radio Access Network
100%
Communication Latency
100%
Machine Learning Approach
100%
Reinforcement Learning
50%
Reliability Requirement
50%
Computer Network
25%
Performance Enhancement
25%
Learning Scheme
25%
Sequential Decision Making
25%
Creation Session
25%
Machine Learning
25%
Learning System
25%
Telecommunication
25%