跳至主導覽
跳至搜尋
跳過主要內容
國立陽明交通大學研發優勢分析平台 首頁
English
中文
首頁
人員
單位
研究成果
計畫
獎項
活動
貴重儀器
影響
按專業知識、姓名或所屬機構搜尋
Semiconductor Defect Detection by Hybrid Classical-Quantum Deep Learning
Yuan Fu Yang
, Min Sun
智能系統研究所
研究成果
:
Conference contribution
›
同行評審
43
引文 斯高帕斯(Scopus)
總覽
指紋
指紋
深入研究「Semiconductor Defect Detection by Hybrid Classical-Quantum Deep Learning」主題。共同形成了獨特的指紋。
排序方式
重量
按字母排序
Keyphrases
Wafer
100%
Semiconductor Defects
100%
Defect Detection
100%
Quantum Deep Learning
100%
Defect Review
66%
Rapid Development
33%
Artificial Intelligence
33%
Energy Consumption
33%
Semiconductor Manufacturing
33%
Semiconductors
33%
Deep Learning
33%
Circuit-based
33%
Information Processing
33%
Carbon Dioxide Emissions
33%
Hybrid Algorithm
33%
Processing Advantage
33%
Hotspot Detection
33%
Quantum Computing
33%
Tuning Parameter
33%
Semiconductor Processing
33%
Quantum Circuit
33%
Wafer Defect Pattern
33%
Defect Classification
33%
Classification Detection
33%
Autonomous Driving Technology
33%
Quantum Processor
33%
Parametrized Quantum Circuit
33%
Future Roadmap
33%
Quantum Hybrid
33%
Map Classification
33%
Engineering
Defect Detection
100%
Deep Learning Method
100%
Quantum Circuit
66%
Semiconductor Manufacturing
33%
Defect Classification
33%
Artificial Intelligence
33%
Quantum Computation
33%
Physics
Deep Learning Method
100%
Crystal Defect
100%
Quantum Computing
33%
Information Processing
33%
Carbon Dioxide Emission
33%
Artificial Intelligence
33%
Material Science
Electronic Circuit
100%
Crystal Defect
100%
Carbon Dioxide
33%