Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes

Yun Wu*, Junyu Ma, Parker S. Woods, Nicholas M. Chesarino, Chang Liu, L. James Lee, Serge P. Nana-Sinkam, Ian C. Davis

*此作品的通信作者

研究成果: Article同行評審

31 引文 斯高帕斯(Scopus)

摘要

Alveolar type II (ATII) respiratory epithelial cells are essential to normal lung function. They may be also central to the pathogenesis of diseases such as acute lung injury, pulmonary fibrosis, and pulmonary adenocarcinoma. Hence, ATII cells are important therapeutic targets. However, effective ATII cell-specific drug delivery in vivo requires carriers of an appropriate size, which can cross the hydrophobic alveolar surfactant film and polar aqueous layer overlying ATII cells, and be taken up without inducing ATII cell dysfunction, pulmonary inflammation, lung damage, or excessive systemic spread and side-effects. We have developed lipoplexes as a versatile nanoparticle carrier system for drug/RNA delivery. To optimize their pulmonary localization and ATII cell specificity, lipoplexes were conjugated to an antibody directed against the ATII cell-specific antigen surfactant protein-C (SP-C) then administered to C57BL/6 mice via the nares. Intranasally-administered, anti-SP-C-conjugated lipoplexes targeted mouse ATII cells with > 70% specificity in vivo, were retained within ATII cells for at least 48 h, and did not accumulate at significant levels in other lung cell types or viscera. 48 h after treatment with anti-SP-C-conjugated lipoplexes containing the test microRNA miR-486, expression of mature miR-486 was approximately 4-fold higher in ATII cells than whole lung by qRT-PCR, and was undetectable in other viscera. Lipoplexes induced no weight loss, hypoxemia, lung dysfunction, pulmonary edema, or pulmonary inflammation over a 6-day period. These findings indicate that ATII cell-targeted lipoplexes exhibit all the desired characteristics of an effective drug delivery system for the treatment of pulmonary diseases that result primarily from ATII cell dysfunction.

原文English
頁(從 - 到)140-149
頁數10
期刊Journal of Controlled Release
203
DOIs
出版狀態Published - 10 4月 2015

指紋

深入研究「Selective targeting of alveolar type II respiratory epithelial cells by anti-surfactant protein-C antibody-conjugated lipoplexes」主題。共同形成了獨特的指紋。

引用此