TY - JOUR
T1 - Secondary-Phase-Induced Charge–Discharge Performance Enhancement of Co-Free High Entropy Spinel Oxide Electrodes for Li-Ion Batteries
AU - Nguyen, Thi Xuyen
AU - Patra, Jagabandhu
AU - Tsai, Chia Chien
AU - Xuan, Wen Ye
AU - Chen, Hsin Yi Tiffany
AU - Dyer, Matthew S.
AU - Clemens, Oliver
AU - Li, Ju
AU - Majumder, Subhasish Basu
AU - Chang, Jeng Kuei
AU - Ting, Jyh Ming
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023
Y1 - 2023
N2 - High entropy oxide (HEO) has emerged as a new class of anode material for Li-ion batteries (LIBs) by offering infinite possibilities to tailor the charge–discharge properties. While the advantages of single-phase HEO anodes are realized, the effects of a secondary phase are overlooked. In this study, two kinds of Co-free HEOs are prepared, containing Cr, Mn, Fe, Ni, and Zn, for use as LIB anodes. One is a plain cubic-structure high entropy spinel oxide HESO (C) prepared using a solvothermal method. The other HESO (C+T) contains an extra secondary phase of tetragonal spinel oxide and is prepared using a hydrothermal method. It is demonstrated that the secondary tetragonal spinel phase introduces phase boundaries and defects/oxygen vacancies within HESO (C+T), which improve the redox kinetics and reversibility during electrode lithiation/delithiation. Density functional theory calculation is performed to assess the phase stability of cubic spinel, tetragonal spinel, and rock-salt structures, and validate the cycling stability of the electrodes upon charging–discharging. The secondary-phase-induced rate capability and cyclability enhancement of HEO electrodes are for the first time demonstrated. A HESO (C+T)||LiNi0.8Co0.1Mn0.1O2 full cell is assembled and evaluated, showing a promising gravimetric energy density of ≈610 Wh kg−1 based on electrode-active materials.
AB - High entropy oxide (HEO) has emerged as a new class of anode material for Li-ion batteries (LIBs) by offering infinite possibilities to tailor the charge–discharge properties. While the advantages of single-phase HEO anodes are realized, the effects of a secondary phase are overlooked. In this study, two kinds of Co-free HEOs are prepared, containing Cr, Mn, Fe, Ni, and Zn, for use as LIB anodes. One is a plain cubic-structure high entropy spinel oxide HESO (C) prepared using a solvothermal method. The other HESO (C+T) contains an extra secondary phase of tetragonal spinel oxide and is prepared using a hydrothermal method. It is demonstrated that the secondary tetragonal spinel phase introduces phase boundaries and defects/oxygen vacancies within HESO (C+T), which improve the redox kinetics and reversibility during electrode lithiation/delithiation. Density functional theory calculation is performed to assess the phase stability of cubic spinel, tetragonal spinel, and rock-salt structures, and validate the cycling stability of the electrodes upon charging–discharging. The secondary-phase-induced rate capability and cyclability enhancement of HEO electrodes are for the first time demonstrated. A HESO (C+T)||LiNi0.8Co0.1Mn0.1O2 full cell is assembled and evaluated, showing a promising gravimetric energy density of ≈610 Wh kg−1 based on electrode-active materials.
KW - Co-free electrodes
KW - high entropy stabilization
KW - hydrothermal process
KW - secondary phase
KW - solvothermal process
UR - http://www.scopus.com/inward/record.url?scp=85152777558&partnerID=8YFLogxK
U2 - 10.1002/adfm.202300509
DO - 10.1002/adfm.202300509
M3 - Article
AN - SCOPUS:85152777558
SN - 1616-301X
JO - Advanced Functional Materials
JF - Advanced Functional Materials
ER -