Robust decoding for convolutionally coded systems impaired by memoryless impulsive noise

Der Feng Tseng, Yunghsiang S. Han, Wai Ho Mow, Po-Ning Chen, Jing Deng, A. J.Han Vinck

研究成果: Article同行評審

15 引文 斯高帕斯(Scopus)


It is well known that communication systems are susceptible to strong impulsive noises. To combat this, convolutional coding has long served as a cost-efficient tool against moderately frequent memoryless impulses with given statistics. Nevertheless, impulsive noise statistics are difficult to model accurately and are typically not time-invariant, making the system design challenging. In this paper, because of the lack of knowledge regarding the probability density function of impulsive noises, an efficient decoding scheme was devised for single-carrier narrowband communication systems; a design parameter was incorporated into recently introduced joint erasure marking and Viterbi decoding algorithm, dubbed the metric erasure Viterbi algorithm (MEVA). The proposed scheme involves incorporating a well-designed clipping operation into a Viterbi algorithm, in which the clipping threshold must be appropriately set. In contrast to previous publications that have resorted to extensive simulations, in the proposed scheme, the bit error probability performance associated with the clipping threshold was characterized by deriving its Chernoff bound. The results indicated that when the clipping threshold was judiciously selected, the MEVA can be on par with its optimal maximum-likelihood decoding counterpart under fairly general circumstances.

頁(從 - 到)4640-4652
期刊IEEE Transactions on Communications
出版狀態Published - 1 11月 2013


深入研究「Robust decoding for convolutionally coded systems impaired by memoryless impulsive noise」主題。共同形成了獨特的指紋。